Power Generation Technology ›› 2022, Vol. 43 ›› Issue (1): 131-138.DOI: 10.12096/j.2096-4528.pgt.21017
• Power Generation and Environmental Protection • Previous Articles Next Articles
Yaonan GAO, Haifeng CHEN, Jianyong WANG
Received:
2021-07-03
Published:
2022-02-28
Online:
2022-03-18
Supported by:
CLC Number:
Yaonan GAO, Haifeng CHEN, Jianyong WANG. Thermodynamic Analysis of a New Combined Cooling, Heating and Power System Using CO2 Working Fluid[J]. Power Generation Technology, 2022, 43(1): 131-138.
参数 | 数值 |
---|---|
环境压力/kPa | 101.3 |
环境温度/℃ | 20 |
热源进口温度/℃ | 170 |
热源流体质量流量/(kg·s-1) | 10 |
用户热水温度/℃ | 60 |
冷媒水温度/℃ | 5 |
透平进口温度/℃ | 165 |
透平进口压力/MPa | 14 |
透平出口压力/MPa | 8.5 |
顶循环和底循环的CO2流量比 | 8 |
透平等熵效率/% | 80 |
压缩机等熵效率/% | 70 |
Tab. 1 Setting parameters of CCHP system
参数 | 数值 |
---|---|
环境压力/kPa | 101.3 |
环境温度/℃ | 20 |
热源进口温度/℃ | 170 |
热源流体质量流量/(kg·s-1) | 10 |
用户热水温度/℃ | 60 |
冷媒水温度/℃ | 5 |
透平进口温度/℃ | 165 |
透平进口压力/MPa | 14 |
透平出口压力/MPa | 8.5 |
顶循环和底循环的CO2流量比 | 8 |
透平等熵效率/% | 80 |
压缩机等熵效率/% | 70 |
状态点 | 温度/℃ | 压力/kPa | 焓/(kJ·kg-1) | 熵/(kJ·kg-1·K-1) | 干度 | 流量/(kg·s-1) |
---|---|---|---|---|---|---|
1 | 32.00 | 8 500.00 | 288.94 | 1.29 | 1.00 | 18.83 |
2 | 43.99 | 14 000.00 | 299.89 | 1.30 | 1.00 | 18.83 |
3 | 165.00 | 14 000.00 | 572.49 | 2.05 | 1.00 | 18.83 |
4 | 123.11 | 8 500.00 | 546.45 | 2.06 | 1.00 | 18.83 |
5 | 118.59 | 8 500.00 | 540.70 | 2.05 | 1.00 | 21.18 |
6 | 32.00 | 8 500.00 | 288.94 | 1.29 | 1.00 | 21.18 |
7 | 32.00 | 8 500.00 | 288.94 | 1.29 | 1.00 | 2.35 |
8 | -5.55 | 3 000.00 | 288.94 | 1.33 | 0.41 | 2.35 |
9 | -5.55 | 3 000.00 | 433.61 | 1.88 | 1.00 | 2.35 |
10 | 85.16 | 8 500.00 | 494.70 | 1.93 | 1.00 | 2.35 |
g1 | 170.00 | 900.00 | 719.14 | 2.04 | — | 10.00 |
g2 | 48.99 | 900.00 | 205.88 | 0.69 | — | 10.00 |
b1 | 20.00 | 101.30 | 84.01 | 0.30 | — | 31.89 |
b2 | 60.00 | 101.30 | 251.25 | 0.83 | — | 31.89 |
c1 | 20.00 | 101.30 | 84.01 | 0.30 | — | 5.41 |
c2 | 5.00 | 101.30 | 21.12 | 0.08 | — | 5.41 |
Tab. 2 Thermodynamic parameters of each state point under the system simulation conditions
状态点 | 温度/℃ | 压力/kPa | 焓/(kJ·kg-1) | 熵/(kJ·kg-1·K-1) | 干度 | 流量/(kg·s-1) |
---|---|---|---|---|---|---|
1 | 32.00 | 8 500.00 | 288.94 | 1.29 | 1.00 | 18.83 |
2 | 43.99 | 14 000.00 | 299.89 | 1.30 | 1.00 | 18.83 |
3 | 165.00 | 14 000.00 | 572.49 | 2.05 | 1.00 | 18.83 |
4 | 123.11 | 8 500.00 | 546.45 | 2.06 | 1.00 | 18.83 |
5 | 118.59 | 8 500.00 | 540.70 | 2.05 | 1.00 | 21.18 |
6 | 32.00 | 8 500.00 | 288.94 | 1.29 | 1.00 | 21.18 |
7 | 32.00 | 8 500.00 | 288.94 | 1.29 | 1.00 | 2.35 |
8 | -5.55 | 3 000.00 | 288.94 | 1.33 | 0.41 | 2.35 |
9 | -5.55 | 3 000.00 | 433.61 | 1.88 | 1.00 | 2.35 |
10 | 85.16 | 8 500.00 | 494.70 | 1.93 | 1.00 | 2.35 |
g1 | 170.00 | 900.00 | 719.14 | 2.04 | — | 10.00 |
g2 | 48.99 | 900.00 | 205.88 | 0.69 | — | 10.00 |
b1 | 20.00 | 101.30 | 84.01 | 0.30 | — | 31.89 |
b2 | 60.00 | 101.30 | 251.25 | 0.83 | — | 31.89 |
c1 | 20.00 | 101.30 | 84.01 | 0.30 | — | 5.41 |
c2 | 5.00 | 101.30 | 21.12 | 0.08 | — | 5.41 |
参数 | 数值 |
---|---|
Wtb/kW | 490.36 |
Wcom1/kW | 206.25 |
Wcom2/kW | 143.77 |
Wnet/kW | 140.34 |
Qheat/kW | 5 332.75 |
Eheat/kW | 333.81 |
Qcool/kW | 340.50 |
Ecool/kW | 9.03 |
Qin/kW | 5 132.60 |
Ein/kW | 1 171.52 |
ηthm/% | 113.27 |
ηexg/% | 41.24 |
Tab. 3 Performance parameters of system under simulation conditions
参数 | 数值 |
---|---|
Wtb/kW | 490.36 |
Wcom1/kW | 206.25 |
Wcom2/kW | 143.77 |
Wnet/kW | 140.34 |
Qheat/kW | 5 332.75 |
Eheat/kW | 333.81 |
Qcool/kW | 340.50 |
Ecool/kW | 9.03 |
Qin/kW | 5 132.60 |
Ein/kW | 1 171.52 |
ηthm/% | 113.27 |
ηexg/% | 41.24 |
1 | 解鸣,任德财,濮晓宙,等 .冷热电三联供系统的发展现状和应用综述[J]. 制冷,2019,38(1):67-73. doi:10.3969/J.ISSN.1005-9180.2019.01.012 |
XIE M, REN D C, PU X Z,et al. Review on the development and application of combined cooling, heating and power system[J]. Refrigeration,2019,38(1):67-73. doi:10.3969/J.ISSN.1005-9180.2019.01.012 | |
2 | 耿健,杨冬梅,高正平,等 .含储能的冷热电联供分布式综合能源微网优化运行[J] .电力工程技术,2021,40(1):25-32. |
GENG J, YANG D M, GAO Z P,et al .Optimal operation of distributed integrated energy microgrid with CCHP considering energy storage[J]. Electric Power Engineering Technology,2021,40(1):25-32. | |
3 | 李高潮,卢怀宇,孙启德,等 .基于可再生能源的冷热电联供系统集成配置与运行优化研究进展[J].电网与清洁能源,2021,37(3):106-119. doi:10.3969/j.issn.1674-3814.2021.03.015 |
LI G C, LU H Y, SUN Q D,et al. Research progress in configuration and operation optimization of combined cooling,heating and power (CCHP) systems based on renewable energy[J]. Power System and Clean Energy,2021,37(3):106-119. doi:10.3969/j.issn.1674-3814.2021.03.015 | |
4 | 慕明良,李守茂,孟祥鹤,等 .考虑灵活性的冷热电联供型微网优化调度[J].智慧电力,2020,48(3):39-46. doi:10.3969/j.issn.1673-7598.2020.03.006 |
MU M L, LI S M, MENG X H,et al .Optimal scheduling of CCHP microgrid considering flexibility[J]. Smart Power,2020,48(3):39-46. doi:10.3969/j.issn.1673-7598.2020.03.006 | |
5 | 孙黎霞,鞠平,白景涛,等 .计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J].发电技术,2020,41(1):64-72. doi:10.12096/j.2096-4528.pgt.19175 |
SUN L X, JU P, BAI J T,et al .Multi-objective economic optimal operation of microgrid based on combined cooling, heating and power considering battery life[J]. Power Generation Technology,2020,41(1):64-72. doi:10.12096/j.2096-4528.pgt.19175 | |
6 | 薛晓东,韩巍,王晓东,等 .适合分布式冷热电联供系统的中小型发电装置[J].发电技术,2020,41(3):252-260. doi:10.12096/j.2096-4528.pgt.20031 |
XUE X D, HAN W, WANG X D,et al .Small and medium-scale power generation devices suiting for distributed combined cooling,heating and power system[J]. Power Generation Technology,2020,41(3):252-260. doi:10.12096/j.2096-4528.pgt.20031 | |
7 | 郑开云 .超临界二氧化碳循环热电联产系统初步研究[J].分布式能源,2017,2(3):15-19. doi:10.16513/j.cnki.10-1427/tk.2017.03.003 |
ZHENG K Y. Preliminary study on supercritical carbon dioxide cycle cogeneration system[J].Distributed Energy,2017,2(3):15-19. doi:10.16513/j.cnki.10-1427/tk.2017.03.003 | |
8 | LI H, JIN Z, YANG Y,et al .Preliminary conceptual design and performance assessment of combined heat and power systems based on the supercritical carbon dioxide power plant[J].Energy Conversion & Management,2019,199: 111939.1-111939.13. doi:10.1016/j.enconman.2019.111939 |
9 | LIU Z, YANG X, LIU X,et al .Performance assessment of a novel combined heating and power system based on transcritical CO2 power and heat pump cycles using geothermal energy[J].Energy Conversion and Management,2020,224:113355. doi:10.1016/j.enconman.2020.113355 |
10 | LI B, WANG S S .Thermo-economic analysis and optimization of a novel carbon dioxide based combined cooling and power system[J].Energy Conversion and Management,2019,199:112048. doi:10.1016/j.enconman.2019.112048 |
11 | IPAKCHI O, MOSAFFA A H, FARSHI L G . Ejector based CO2 transcritical combined cooling and power system utilizing waste heat recovery:a thermoeconomic assessment[J].Energy Conversion & Management, 2019,186:462-472. doi:10.1016/j.enconman.2019.03.009 |
12 | XIA J, GUO Y, LI Y,et al .Thermodynamic analysis and comparison study of two novel combined cooling and power systems with separators using CO2-based mixture for low grade heat source recovery[J].Energy Conversion and Management,2020,215:128-135. doi:10.1016/j.enconman.2020.112918 |
13 | LIU Z, LIU Z H, CAO X,et al .Self-condensing transcritical CO2 cogeneration system with extraction turbine and ejector refrigeration cycle: A techno-economic assessment study[J]. Energy,2020,208:118391. doi:10.1016/j.energy.2020.118391 |
14 | XU X X, LIU C, FU X,et al .Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2 [J].Energy,2015,86:414-422. doi:10.1016/j.energy.2015.04.043 |
15 | HOU S, ZHANG F, YU L,et al .Optimization of a combined cooling,heating and power system using CO2 as main working fluid driven by gas turbine waste heat[J]. Energy Conversion & Management,2018,178: 235-249. doi:10.1016/j.enconman.2018.09.072 |
16 | LIU Z, CAO F, GUO J,et al .Performance analysis of a novel combined cooling,heating and power system based on carbon dioxide energy storage[J].Energy Conversion & Management,2019,188:151-161. doi:10.1016/j.enconman.2019.03.031 |
17 | ZARE V, ROSTAMNEJAD T H .Novel geothermal driven CCHP systems integrating ejector transcritical CO2 and Rankine cycles:Thermodynamic modeling and parametric study[J].Energy Conversion and Management,2020,205:345-350. doi:10.1016/j.enconman.2019.112396 |
18 | FAN G, LI H, DU Y,et al .Preliminary conceptual design and thermo-economic analysis of a combined cooling, heating and power system based on supercritical carbon dioxide cycle[J].Energy,2020,203:117842. doi:10.1016/j.energy.2020.117842 |
[1] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[2] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[3] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[4] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[5] | Li WANG, Huan ZHANG, Yi YE, Xinglei ZHAO. Formulation Study of N-Aminoethyl Piperazine and Sodium Glycine CO2 Absorbent [J]. Power Generation Technology, 2023, 44(5): 674-684. |
[6] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[7] | Lin WANG. Research on Closed Cycle Pipe Blowing Technology of 5 MW Supercritical Carbon Dioxide Unit Boiler [J]. Power Generation Technology, 2023, 44(5): 731-737. |
[8] | Xin TANG, Yiran QIAN, Huawei FANG, Yang LI, Siguang LI, Jingwei YI, Weixiong CHEN, Junjie YAN. A Review of Control Strategies for Supercritical Carbon Dioxide Brayton Cycle [J]. Power Generation Technology, 2023, 44(4): 492-501. |
[9] | Daocheng HU, Rui WANG, Rui ZHAO, Nannan SUN, Dong XU, Liying LIU. Research on Carbon Dioxide Capture Technology and Suitable Scenarios [J]. Power Generation Technology, 2023, 44(4): 502-513. |
[10] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[11] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[12] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[13] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[14] | Wenjun KONG, Yansen ZHANG, Xiaoping TANG, Weikuo ZHANG. Study on Heat Production Characteristics of Lithium-ion Batteries for Large Capacity Energy Storage [J]. Power Generation Technology, 2022, 43(5): 801-809. |
[15] | Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch [J]. Power Generation Technology, 2022, 43(2): 328-340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||