Power Generation Technology ›› 2023, Vol. 44 ›› Issue (5): 712-721.DOI: 10.12096/j.2096-4528.pgt.21109
• Power Generation and Environmental Protection • Previous Articles Next Articles
Yang YANG1,2, Yaoqiang LI3, Jinqi ZHANG3
Received:
2022-11-25
Published:
2023-10-31
Online:
2023-10-30
Supported by:
CLC Number:
Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method[J]. Power Generation Technology, 2023, 44(5): 712-721.
边界 | 参数 | 空气 进口 | 燃料吸力面 | 燃料压力面 | 燃烧器出口 | 燃料质量分数/% |
---|---|---|---|---|---|---|
1 | 速度/(m/s) | 18.00 | 25.64 | 26.30 | 11.98 | 2.9 |
流量/(g/s) | 19.87 | 0.30 | 0.30 | 20.47 | ||
2 | 速度/(m/s) | 35.00 | 49.90 | 51.18 | 22.54 | 2.9 |
流量/(g/s) | 38.63 | 0.58 | 0.58 | 39.80 | ||
3 | 速度/(m/s) | 50.00 | 60.22 | 61.77 | 29.93 | 2.5 |
流量/(g/s) | 55.19 | 0.70 | 0.70 | 56.59 | ||
4 | 速度/(m/s) | 50.00 | 71.23 | 73.07 | 32.20 | 2.9 |
流量/(g/s) | 55.19 | 0.83 | 0.83 | 56.85 | ||
5 | 速度/(m/s) | 75.00 | 106.85 | 109.60 | 48.25 | 2.9 |
流量/(g/s) | 82.79 | 1.24 | 1.24 | 85.28 |
Tab. 1 Boundary conditions of cases with different velocities and mass flow rates
边界 | 参数 | 空气 进口 | 燃料吸力面 | 燃料压力面 | 燃烧器出口 | 燃料质量分数/% |
---|---|---|---|---|---|---|
1 | 速度/(m/s) | 18.00 | 25.64 | 26.30 | 11.98 | 2.9 |
流量/(g/s) | 19.87 | 0.30 | 0.30 | 20.47 | ||
2 | 速度/(m/s) | 35.00 | 49.90 | 51.18 | 22.54 | 2.9 |
流量/(g/s) | 38.63 | 0.58 | 0.58 | 39.80 | ||
3 | 速度/(m/s) | 50.00 | 60.22 | 61.77 | 29.93 | 2.5 |
流量/(g/s) | 55.19 | 0.70 | 0.70 | 56.59 | ||
4 | 速度/(m/s) | 50.00 | 71.23 | 73.07 | 32.20 | 2.9 |
流量/(g/s) | 55.19 | 0.83 | 0.83 | 56.85 | ||
5 | 速度/(m/s) | 75.00 | 106.85 | 109.60 | 48.25 | 2.9 |
流量/(g/s) | 82.79 | 1.24 | 1.24 | 85.28 |
工况 | 孔数 | 压力面喷孔 | 吸力面喷孔 | ||||
---|---|---|---|---|---|---|---|
面积/mm2 | 速度/(m/s) | 流量/(g/s) | 面积/mm2 | 速度/(m/s) | 流量/(g/s) | ||
基准型 | 压力面、吸力面各2孔 | 17.9 | 71.23 | 0.83 | 17.4 | 73.07 | 0.83 |
改型1 | 压力面、吸力面各4孔 | 34.9 | 36.57 | 0.83 | 34.4 | 37.05 | 0.83 |
改型2 | 压力面4孔 | 34.9 | 73.13 | 1.66 | 0 | 0 | 0 |
改型3 | 吸力面4孔 | 0 | 0 | 0 | 34.4 | 74.09 | 1.66 |
Tab. 2 Parameters and boundary conditions of different fuel nozzles
工况 | 孔数 | 压力面喷孔 | 吸力面喷孔 | ||||
---|---|---|---|---|---|---|---|
面积/mm2 | 速度/(m/s) | 流量/(g/s) | 面积/mm2 | 速度/(m/s) | 流量/(g/s) | ||
基准型 | 压力面、吸力面各2孔 | 17.9 | 71.23 | 0.83 | 17.4 | 73.07 | 0.83 |
改型1 | 压力面、吸力面各4孔 | 34.9 | 36.57 | 0.83 | 34.4 | 37.05 | 0.83 |
改型2 | 压力面4孔 | 34.9 | 73.13 | 1.66 | 0 | 0 | 0 |
改型3 | 吸力面4孔 | 0 | 0 | 0 | 34.4 | 74.09 | 1.66 |
参数 | 工况 | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
空气流速/(m/s) | 18 | 35 | 50 | 75 |
折算热功率/(MW/MPa) | 0.332 | 0.645 | 0.921 | 1.383 |
Tab. 3 Different air flow rates and corresponding thermal power conditions
参数 | 工况 | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
空气流速/(m/s) | 18 | 35 | 50 | 75 |
折算热功率/(MW/MPa) | 0.332 | 0.645 | 0.921 | 1.383 |
结构 | 压力面燃料孔个数 | 吸力面燃料孔个数 |
---|---|---|
基准型 | 2 | 2 |
改型1 | 4 | 4 |
改型2 | 4 | 0 |
改型3 | 0 | 4 |
Tab. 4 Different fuel hole structures
结构 | 压力面燃料孔个数 | 吸力面燃料孔个数 |
---|---|---|
基准型 | 2 | 2 |
改型1 | 4 | 4 |
改型2 | 4 | 0 |
改型3 | 0 | 4 |
1 | LEFEBVRE A H, BALLAL D R .Gas turbine combustion:alternative fuels and emissions[M].Karabas:CRC Press,2010. doi:10.1201/9781420086058 |
2 | GOLDMEER J, YORK W, GLASER P .Fuel and combustion system capabilities of GE’s F and HA class gas turbines[C]//ASME Turbo Expo:Turbomachinery Technical Conference & Exposition.Charlotte,North Carolina,USA:ASME,2017:64588. doi:10.1115/gt2017-64588 |
3 | 田晓晶,崔玉峰,邢双喜,等 .预混段结构对旋流预混氢火焰回火形式影响的数值研究[J].推进技术,2015,36(3):345-351. doi:10.13675/j.cnki.tjjs.2015.03.004 |
TIAN X J, CUI Y F, XING S X,et al .Numerical investigation on effects of mixing zone structure on flashback type for swirl-premixed hydrogen flame[J].Journal of Propulsion Technology,2015,36(3):345-351. doi:10.13675/j.cnki.tjjs.2015.03.004 | |
4 | HUANG Y, YANG V .Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor[J].Proceedings of the Combustion Institute,2005,30(2):1775-1782. doi:10.1016/j.proci.2004.08.237 |
5 | 杨旸,陈明敏,刘潇,等 .天然气低排放旋流燃烧室头部结构性能研究[J].燃气轮机技术,2020,33(1):25-31. |
YANG Y, CHEN M M, LIU X,et al .Research on design and performance of swirl combustor for low emission natural gas turbine[J].Gas Turbine Technology,2020,33(1):25-31. | |
6 | 祝俊宗,胡羽,夏单城,等 .改善低 NO x 燃烧室预混均匀性的结构优化策略[J].中国电机工程学报,2017,37(21):6353-6362. doi:10.13334/j.0258-8013.pcsee.162186 |
ZHU J Z, HU Y, XIA D C,et al .Structural optimization strategy of improving the premixing uniformity in a low NO x combustor[J].Proceedings of the CSEE,2017,37(21):6353-6362. doi:10.13334/j.0258-8013.pcsee.162186 | |
7 | YANG Y, NOIRAY N, SCARPATO A,et al .Numerical analysis of the dynamic flame response in Alstom reheat combustion systems[C]//ASME Turbo Exposition:Turbine Technical Conference & Exposition.Montreal,Canada:ASME,2015:42622. doi:10.1115/gt2015-42622 |
8 | YANG Y, LIU X, ZHANG Z H .Large eddy simulation calculated flame dynamics of one F-class gas turbine combustor[J].Fuel,2020,261:116451. doi:10.1016/j.fuel.2019.116451 |
9 | 管金,何宗泽,吕小静,等 .30 kW微型燃气轮机发电机组启动实验研究[J].发电技术,2021,42(4):404-411. doi:10.12096/j.2096-4528.pgt.21086 |
GUAN J, HE Z Z, LÜ X J,et al .Experimental study on startup of 30 kW micro gas turbine generator set[J].Power Generation Technology,2021,42(4):404-411. doi:10.12096/j.2096-4528.pgt.21086 | |
10 | POLIFKE W .Modeling and analysis of premixed flame dynamics by means of distributed time delays[J].Progress in Energy and Combustion Science,2020,79:100845. doi:10.1016/j.pecs.2020.100845 |
11 | GREGORY P S, DAVID M G, MICHAEL F,et al .GRI-Mech 3.0[EB/OL].Berkeley,CA:University of California,(2000-02-15)[2021-10-05].. |
12 | ZIMONT V, POLIFKE W, BETTELINI M,et al. An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure[J].Journal of Engineering for Gas Turbines and Power,1998,120:526. doi:10.1115/1.2818178 |
13 | DOBBELING K, HELLAT J, KOCH H .25 years of BBC/ABB/Alstom lean premix combustion technologies [C]//Turbo Expo:Power for Land,Sea,and Air.Nevada,USA:ASME,2005:201-213. doi:10.1115/gt2005-68269 |
14 | CHONG L TAY WO, KOMAREK T, KAESS R,et al .Identification of flame transfer functions from LES of a premixed swirl burner[C]//Turbo Expo:Power for Land,Sea,and Air.Glasgow,UK:ASME,2010:623-635. doi:10.1115/gt2010-22769 |
15 | INNOCENTI A, ANDREINI A, FACCHINI B,et al .Numerical analysis of the dynamic flame response of a spray flame for aero-engine applications[J].International Journal of Spray and Combustion Dynamics,2017,9(4):310-329. doi:10.1177/1756827717703577 |
16 | ISERMANN R, MÜNCHHOF M .Identification of dynamic systems:an introduction with applications[M].Germany:Springer Science & Business Media,2010. doi:10.1007/978-3-540-78879-9_22 |
17 | GUPTA A K, LILLEY D G, SYRED N .Swirl flows[M].Tunbridge Wells:Abacus Press,1984. |
[1] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[2] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[3] | Haiwei JIANG, Mingming GAO, Jie LI, Haoyang YU, Guangxi YUE, Zhong HUANG. Modeling and Dynamic Characteristic Analysis of Combustion Process of Biomass Vibrating Grate Furnace [J]. Power Generation Technology, 2024, 45(2): 250-259. |
[4] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[5] | Zeyang CUI, Xiangling KONG, Jinglun FU, Jiajun SHI. An Image-Based Turbine Blade Parameter Inspection Method [J]. Power Generation Technology, 2024, 45(1): 106-112. |
[6] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[7] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[8] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[9] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[10] | Jiangang HAO, Wenming GONG, Yang DING, Danwei ZHENG, Yong LIU. Analysis on Combustion Instability Characteristics of Model Swirl Combustor With Gas Fuel [J]. Power Generation Technology, 2022, 43(6): 927-934. |
[11] | Wenjun KONG, Yansen ZHANG, Xiaoping TANG, Weikuo ZHANG. Study on Heat Production Characteristics of Lithium-ion Batteries for Large Capacity Energy Storage [J]. Power Generation Technology, 2022, 43(5): 801-809. |
[12] | Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch [J]. Power Generation Technology, 2022, 43(2): 328-340. |
[13] | Yunfeng JIN, Chao LIU, Gaofeng DENG, Yunlong GUAN, Jiangang HAO, Haizhou HUANG, Dongxiang JIANG. Cost Benefit Analysis for Maintenance Strategy of Gas Turbine Inlet Filtration System [J]. Power Generation Technology, 2022, 43(1): 119-125. |
[14] | Yaonan GAO, Haifeng CHEN, Jianyong WANG. Thermodynamic Analysis of a New Combined Cooling, Heating and Power System Using CO2 Working Fluid [J]. Power Generation Technology, 2022, 43(1): 131-138. |
[15] | Chunxi DAI, Ping LIANG, Deyong CHE, Haiting LIU. Study on Flow Characteristics in Honeycomb Tube Wet Electrostatic Precipitator [J]. Power Generation Technology, 2022, 43(1): 155-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||