Power Generation Technology ›› 2023, Vol. 44 ›› Issue (4): 502-513.DOI: 10.12096/j.2096-4528.pgt.22056
• Carbon Neutrality • Previous Articles Next Articles
Daocheng HU1, Rui WANG2, Rui ZHAO3, Nannan SUN4, Dong XU3, Liying LIU2
Received:
2023-01-20
Published:
2023-08-31
Online:
2023-08-29
Contact:
Liying LIU
Supported by:
CLC Number:
Daocheng HU, Rui WANG, Rui ZHAO, Nannan SUN, Dong XU, Liying LIU. Research on Carbon Dioxide Capture Technology and Suitable Scenarios[J]. Power Generation Technology, 2023, 44(4): 502-513.
方法 | 优点 | 不足 |
---|---|---|
氨水法 | 吸收容量较大,再生能耗相对较低,协同脱除其他酸性气体 | 吸收速率极慢,氨逃逸损失大,难以控制 |
热钾碱法 | 吸收成本低,再生能耗相对较小,稳定性好 | 吸收速率慢,需要添加活化剂,吸收容量小 |
醇胺法 | 吸收容量大,吸收速率快,适合低浓度低分压二氧化碳气源的碳捕集 | 投资成本较大,再生能耗较高,腐蚀性问题不容忽略 |
Tab. 1 Characteristics of different absorbents in chemical absorption method
方法 | 优点 | 不足 |
---|---|---|
氨水法 | 吸收容量较大,再生能耗相对较低,协同脱除其他酸性气体 | 吸收速率极慢,氨逃逸损失大,难以控制 |
热钾碱法 | 吸收成本低,再生能耗相对较小,稳定性好 | 吸收速率慢,需要添加活化剂,吸收容量小 |
醇胺法 | 吸收容量大,吸收速率快,适合低浓度低分压二氧化碳气源的碳捕集 | 投资成本较大,再生能耗较高,腐蚀性问题不容忽略 |
方法 | 优点 | 不足 |
---|---|---|
PSA/VPSA | 工艺成熟,应用场景广泛,吸附材料使用周期长 | 吸附剂需求量大,设备多,占地大 |
TSA | 能够对低品位余热资源有效利用,再生程度高 | 升温慢,循环解吸时间长,能耗高,对吸附剂的损伤大 |
ESA | 加热迅速,升温速率独立控制,吸附系统紧凑[ | 吸附剂需要具有适宜的导电性 |
PTSA | 再生程度彻底,解吸附快,循环周期短 | 能量消耗较高,对吸附剂要求较高 |
Tab. 2 Characteristics of different adsorption processes
方法 | 优点 | 不足 |
---|---|---|
PSA/VPSA | 工艺成熟,应用场景广泛,吸附材料使用周期长 | 吸附剂需求量大,设备多,占地大 |
TSA | 能够对低品位余热资源有效利用,再生程度高 | 升温慢,循环解吸时间长,能耗高,对吸附剂的损伤大 |
ESA | 加热迅速,升温速率独立控制,吸附系统紧凑[ | 吸附剂需要具有适宜的导电性 |
PTSA | 再生程度彻底,解吸附快,循环周期短 | 能量消耗较高,对吸附剂要求较高 |
方法 | 优点 | 不足 | 发展方向 |
---|---|---|---|
化学吸收法 | 烟气处理量大,分离效率高,产品气中CO2纯度高,工艺技术成熟度高 | 吸收剂成本较高,解吸过程能耗大,影响 电厂的发电效率;胺损失与腐蚀情况严重 | 研究有效的节能工艺,优化工艺流程、降低成本,开发新型低能耗吸收剂并逐步实现其工业化应用 |
物理吸收法 | 吸收剂化学性质稳定,不易降解;对环境影响小;能耗较低;技术成熟度高 | CO2脱除效率低,吸收剂成本高,只有在低温高压环境下吸收效率高,产品气纯度易受H2S的影响 | 对现有的几种物理吸收法工艺进行改进或综合目前的物理吸收法工艺的优点发展新工艺;寻找理化性能与稳定性能更好、对CO2溶解度更大的吸收剂 |
吸附法 | 对环境友好,能耗低,工艺 流程较简单,自动化程度高 | 对CO2的选择性较低,分离效率不高;不耐高湿气源;吸附剂在运输及使用过程中易损耗 | 开发高吸附选择性及性能更稳定的吸附剂;开发适用于高湿烟气的吸附剂及其配套工艺 |
膜分离法 | 运行过程能耗低,设备紧凑性好,工艺简单易维护 | 对气源要求大,不耐高温,尚不能连续作业, 分离容量小,技术成熟度不高 | 寻找或合成适用的膜材料,主要是膜的选择透过性与耐热耐高温性能;研究与其他方法的耦合使用 |
深冷法 | 工艺耗水少,对环境无污染 | 冷凝过程能耗大,设备庞大 | 探寻效率更高、效果更好的制冷工艺 |
Tab. 3 Characteristics of different carbon capture methods
方法 | 优点 | 不足 | 发展方向 |
---|---|---|---|
化学吸收法 | 烟气处理量大,分离效率高,产品气中CO2纯度高,工艺技术成熟度高 | 吸收剂成本较高,解吸过程能耗大,影响 电厂的发电效率;胺损失与腐蚀情况严重 | 研究有效的节能工艺,优化工艺流程、降低成本,开发新型低能耗吸收剂并逐步实现其工业化应用 |
物理吸收法 | 吸收剂化学性质稳定,不易降解;对环境影响小;能耗较低;技术成熟度高 | CO2脱除效率低,吸收剂成本高,只有在低温高压环境下吸收效率高,产品气纯度易受H2S的影响 | 对现有的几种物理吸收法工艺进行改进或综合目前的物理吸收法工艺的优点发展新工艺;寻找理化性能与稳定性能更好、对CO2溶解度更大的吸收剂 |
吸附法 | 对环境友好,能耗低,工艺 流程较简单,自动化程度高 | 对CO2的选择性较低,分离效率不高;不耐高湿气源;吸附剂在运输及使用过程中易损耗 | 开发高吸附选择性及性能更稳定的吸附剂;开发适用于高湿烟气的吸附剂及其配套工艺 |
膜分离法 | 运行过程能耗低,设备紧凑性好,工艺简单易维护 | 对气源要求大,不耐高温,尚不能连续作业, 分离容量小,技术成熟度不高 | 寻找或合成适用的膜材料,主要是膜的选择透过性与耐热耐高温性能;研究与其他方法的耦合使用 |
深冷法 | 工艺耗水少,对环境无污染 | 冷凝过程能耗大,设备庞大 | 探寻效率更高、效果更好的制冷工艺 |
方法 | 适用气源 | 适用场景 |
---|---|---|
化学吸收法 | 中低CO2浓度气源; 低CO2分压湿气源 | 燃烧前:低CO2浓度天然气脱碳 燃烧后烟气(一般CO2体积分数<20%):燃煤电厂烟气;天然气发电厂烟气;水泥窑烟气;垃圾焚烧厂烟气;钢铁厂直接铁还原烟气 |
物理吸收法 | 适合于压强大,气源中其他气体与CO2的溶解度差异大的气源 | 燃烧前: 1)中高CO2浓度天然气脱碳(CO2体积分数>30%); 2)生物质沼气、化肥厂(生活垃圾、污泥、农业废弃物、食物残渣)(CO2体积分数30%~40%); 3)IGCC合成气(煤气化后的合成气,CO2体积分数15%;水煤气变换单元后的合成气,CO2体积 分数>35%) |
吸附法 | 压强大、低流量、杂质气体组分少的低湿气源 | 燃烧前:1)小规模中等浓度天然气气田开采(CO2体积分数>30%);2)IGCC合成气(煤气化后的合成气(CO2体积分数约15%);水煤气变换单元后的合成气(CO2体积分数>35%) 燃烧后:干燥后的燃烧后烟气(CO2体积分数为15%~20%) |
膜法 | 压强大、CO2分压高、气源杂质气体少且与CO2的渗透速率差异较大的气源 | 燃烧前:1)中高CO2浓度和中低气量的天然气脱碳(CO2体积分数>30%);2)油田伴生气脱碳 燃烧后:经过脱硫脱硝以及干燥的燃烧后烟气 |
深冷法 | 压强大、CO2浓度很高的气源(CO2体积分数>60%) | 1)富氧燃烧后烟气中CO2分离;2)CO2含量很大的天然气井开采 |
Tab. 4 Applicable scenario of each method
方法 | 适用气源 | 适用场景 |
---|---|---|
化学吸收法 | 中低CO2浓度气源; 低CO2分压湿气源 | 燃烧前:低CO2浓度天然气脱碳 燃烧后烟气(一般CO2体积分数<20%):燃煤电厂烟气;天然气发电厂烟气;水泥窑烟气;垃圾焚烧厂烟气;钢铁厂直接铁还原烟气 |
物理吸收法 | 适合于压强大,气源中其他气体与CO2的溶解度差异大的气源 | 燃烧前: 1)中高CO2浓度天然气脱碳(CO2体积分数>30%); 2)生物质沼气、化肥厂(生活垃圾、污泥、农业废弃物、食物残渣)(CO2体积分数30%~40%); 3)IGCC合成气(煤气化后的合成气,CO2体积分数15%;水煤气变换单元后的合成气,CO2体积 分数>35%) |
吸附法 | 压强大、低流量、杂质气体组分少的低湿气源 | 燃烧前:1)小规模中等浓度天然气气田开采(CO2体积分数>30%);2)IGCC合成气(煤气化后的合成气(CO2体积分数约15%);水煤气变换单元后的合成气(CO2体积分数>35%) 燃烧后:干燥后的燃烧后烟气(CO2体积分数为15%~20%) |
膜法 | 压强大、CO2分压高、气源杂质气体少且与CO2的渗透速率差异较大的气源 | 燃烧前:1)中高CO2浓度和中低气量的天然气脱碳(CO2体积分数>30%);2)油田伴生气脱碳 燃烧后:经过脱硫脱硝以及干燥的燃烧后烟气 |
深冷法 | 压强大、CO2浓度很高的气源(CO2体积分数>60%) | 1)富氧燃烧后烟气中CO2分离;2)CO2含量很大的天然气井开采 |
1 | 联合国 .巴黎气候变化协定[EB/OL].(2016-11-04)[2022-03-04].. |
The United Nations .Paris climate change agreement-climate change agreement[EB/OL].(2016-11-04)[2022-03-04].. | |
2 | BP .BP statistical review of world energy[M].London:British Petroleum,2021. |
3 | 王丹 .二氧化碳捕集、利用与封存技术全链分析与集成优化研究[D].北京:中国科学院大学(中国科学院工程热物理研究所),2020. doi:10.33737/gpps20-tc-100 |
WANG D .Full chain analysis, integration and optimization of CO2 capture,utilization and storage technology[D].Beijing:Institute of Engineering Thermophysics,Chinese Academy of Sciences,2020. doi:10.33737/gpps20-tc-100 | |
4 | 吴何来,李汪繁,丁先 .“双碳”目标下我国碳捕集、利用与封存政策分析及建议[J].电力建设,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 |
WU H L, LI W F, DING X .Policy analysis and suggestion for carbon capture,utilization and storage under double carbon target in China[J].Electric Power Construction,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 | |
5 | 董瑞,高林,何松,等 .CCUS技术对我国电力行业低碳转型的意义与挑战[J].发电技术,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 |
DONG R, GAO L, HE S,et al .Significance and challenges of CCUS technology for low-carbon transformation of China’s power industry[J].Power Generation Technology,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 | |
6 | IEA .Energy technology perspectives 2017[EB/OL].(2017-06-30)[2022-03-04].. doi:10.1787/energy_tech-2017-en |
7 | 张九天,张璐 .面向碳中和目标的碳捕集、利用与封存发展初步探讨[J].热力发电,2021,50(1):1-6. |
ZHANG J T, ZHANG L .Preliminary discussion on development of carbon capture,utilization and storage for carbon neutralization[J].Thermal Power Generation,2021,50(1):1-6. | |
8 | 贠保记,张恩硕,张国,等 .考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J].电力系统保护与控制,2022,50(22):11-19. |
YUN B J, ZHANG E S, ZHANG G,et al .Optimal operation of an integrated energy system considering integrated demand response and a “dual carbon” mechanism[J].Power System Protection and Control,2022,50(22):11-19. | |
9 | 童光毅 .基于双碳目标的智慧能源体系构建[J].智慧电力,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 |
TONG G Y .Construction of smart energy system based on dual carbon goal[J].Smart Power,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 | |
10 | 蔡博峰,李琦,张贤,等 .中国二氧化碳捕集、利用与封存 (CCUS) 年度报告 (2021):中国 CCUS 路径研究[R].北京:生态环境部环境规划院,2021. |
CAI B F, LI Q, ZHANG X,et al .China carbon dioxide capture,utilization and storage (CCUS) annual report (2021):China CCUS path study[R].Beijing:Chinese Academy of Environmental Planning,2021. | |
11 | KANG M K, JEON S B, CHO J H,et al .Characterization and comparison of the CO2 absorption performance into aqueous,quasi-aqueous and non-aqueous MEA solutions[J].International Journal of Greenhouse Gas Control,2017,63:281-288. doi:10.1016/j.ijggc.2017.05.020 |
12 | CHAKRAVARTY T, PHUKAN U K, WEILUND R H .Reaction of acid gases with mixtures of amines[J].Chemical Engineering Progress,1985,81(4):32-39. |
13 | OH S Y, BINNS M, CHO H,et al .Energy minimization of MEA-based CO2 capture process[J].Applied Energy,2016,169:353-362. doi:10.1016/j.apenergy.2016.02.046 |
14 | IDEM R, WILSON M, TONTIWACHWUTHIKUL P,et al .Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant[J].Industrial & Engineering Chemistry Research,2006,45(8):2414-2420. doi:10.1021/ie050569e |
15 | LIN C Y, SORIANO A N, LI M H .Kinetics study of carbon dioxide absorption into aqueous solutions containing N-methyldiethanolamine+diethanolamine[J].Journal of the Taiwan Institute of Chemical Engineers,2009,40(4):403-412. doi:10.1016/j.jtice.2008.11.002 |
16 | ZHANG R, ZHANG X, YANG Q,et al .Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)[J].Applied Energy,2017,205:1002-1011. doi:10.1016/j.apenergy.2017.08.130 |
17 | WANG T, LIU F, GE K,et al .Reaction kinetics of carbon dioxide absorption in aqueous solutions of piperazine,N-(2-aminoethyl) ethanolamine and their blends[J].Chemical Engineering Journal,2017,314:123-131. doi:10.1016/j.cej.2016.12.129 |
18 | GARCIA M, KNUUTILA H K, GU S .Determination of kinetics of CO2 absorption in unloaded and loaded DEEA+MAPA blend[J].Energy Procedia,2017,114:1772-1784. doi:10.1016/j.egypro.2017.03.1305 |
19 | HÜSER N, SCHMITZ O, KENIG E Y .A comparative study of different amine-based solvents for CO2-capture using the rate-based approach[J].Chemical Engineering Science,2017,157:221-231. doi:10.1016/j.ces.2016.06.027 |
20 | 李誉 .三乙烯四胺/有机溶剂吸收剂捕集CO2基础性能研究[D].杭州:浙江大学,2021. |
LI Y .Basic performance study on CO2 capture by triethylenetetra mine/organic solvent absorbers[D].Hangzhou:Zhejiang University,2021. | |
21 | YANG D, WANG Y, ROCHELLE G T .Piperazine/4-Hydroxy-1-methylpiperidine for CO2 capture[J].Chemical Engineering Journal,2017,307:158-169. doi:10.1016/j.cej.2016.08.095 |
22 | DARDE V, THOMSEN K, VAN WELL W J M,et al .Chilled ammonia process for CO2 capture[J].Energy Procedia,2009,1(1):1035-1042. doi:10.1016/j.egypro.2009.01.137 |
23 | 徐志明,王颖聪,郜时旺,等 .碳酸钾溶液捕集CO2的吸收热研究[J].中国电机工程学报,2015,35(9):2254-2260. doi:10.13334/j.0258-8013.pcsee.2015.09.020 |
XU Z M, WANG Y C, GAO S W,et al .Heat of CO2 absorption in aqueous potassium carbonate solutions[J].Proceedings of the CSEE,2015,35(9):2254-2260. doi:10.13334/j.0258-8013.pcsee.2015.09.020 | |
24 | 张艺峰,王茹洁,邱明英,等 .CO2捕集技术的研究现状[J].应用化工,2021,50(4):1082-1086. doi:10.3969/j.issn.1671-3206.2021.04.047 |
ZHANG Y F, WANG R J, QIU M Y,et al .CO2 capture technology research status[J].Applied Chemical Industry,2021,50(4):1082-1086. doi:10.3969/j.issn.1671-3206.2021.04.047 | |
25 | YU C H, HUANG C H, TAN C S .A review of CO2 capture by absorption and adsorption[J].Aerosol and Air Quality Research,2012,12(5):745-769. doi:10.4209/aaqr.2012.05.0132 |
26 | WILBERFORCE T, BAROUTAJI A, SOUDAN B,et al .Outlook of carbon capture technology and challenges[J].Science of the Total Environment,2019,657:56-72. doi:10.1016/j.scitotenv.2018.11.424 |
27 | 王泽平,周涛,张记刚,等.电厂二氧化碳捕捉技术对比研究[J].环境科学与技术,2011,34(11):83-87. doi:10.3969/j.issn.1003-6504.2011.11.017 |
WANG Z P, ZHOU T, ZHANG J G,et al .Comparison of carbon dioxide capture technology in power plant[J].Environmental Science & Technology,2011,34(11):83-87. doi:10.3969/j.issn.1003-6504.2011.11.017 | |
28 | 王霏 .金属氧化物负载型吸附剂的制备及其CO2吸附性能的研究[D].青岛:青岛科技大学,2021. |
WANG F .Preparation and CO2 adsorptionproperties of supported metal oxide adsorbents[D].Qingdao:Qingdao University of Science & Technology,2021. | |
29 | SUBRAVETI S G, PAI K N, RAJAGOPALAN A K,et al .Cycle design and optimization of pressure swing adsorption cycles for pre-combustion CO2 capture[J].Applied Energy,2019,254:113624. doi:10.1016/j.apenergy.2019.113624 |
30 | MARING B J, WEBLEY P A .A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications[J].International Journal of Greenhouse Gas Control,2013,15:16-31. doi:10.1016/j.ijggc.2013.01.009 |
31 | ZHAO Q, WU F, XIE K,et al .Synthesis of a novel hybrid adsorbent which combines activated carbon and zeolite NaUSY for CO2 capture by electric swing adsorption (ESA)[J].Chemical Engineering Journal,2018,336:659-668. doi:10.1016/j.cej.2017.11.167 |
32 | ZHAO H, LUO X, ZHANG H,et al .Carbon‐based adsorbents for post‐combustion capture:a review[J].Greenhouse Gases:Science and Technology,2018,8(1):11-36. doi:10.1002/ghg.1758 |
33 | ADHIKARI A K, LIN K S . Improving CO 2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74 (Ni,Co) by doping palladium-containing activated carbon[J].Chemical Engineering Journal,2016,284:1348-1360. doi:10.1016/j.cej.2015.09.086 |
34 | BOYCHEVA S, ZGUREVA D, LAZAROVA H,et al .Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na-Ca-X[J].Chemosphere,2021,271:129505. doi:10.1016/j.chemosphere.2020.129505 |
35 | RIBEIRO R, GRANDE C A, RODRIGUES A E .Electric swing adsorption for gas separation and purification:a review[J].Separation Science and Technology,2014,49(13):1985-2002. doi:10.1080/01496395.2014.915854 |
36 | MACDOWELL N, FLORIN N, BUCHARD A,et al .An overview of CO2 capture technologies[J].Energy & Environmental Science,2010,3(11):1645-1669. doi:10.1039/c004106h |
37 | 陈旭,杜涛,李刚,等 .吸附工艺在碳捕集中的应用现状[J].中国电机工程学报,2019,39(S1):155-163. |
CHEN X, DU T, LI G,et al .Application of adsorption technology on carbon capture[J].Proceedings of the CSEE,2019,39(S1):155-163. | |
38 | 刘丽影,宫赫,王哲,等 .捕集高湿烟气中CO2的变压吸附技术[J].化学进展,2018,30(6):872-878. |
LIU L Y, GONG H, WANG Z,et al .Application of pressure swing adsorption technology to capture CO2 in highly humid flue gas[J].Progress in Chemistry,2018,30(6):872-878. | |
39 | 朱炫灿,葛天舒,吴俊晔,等 .吸附法碳捕集技术的规模化应用和挑战[J].科学通报,2021,66(22):2861-2877. doi:10.1360/tb-2021-0017 |
ZHU X C, GE T S, WU J Y,et al .Large-scale applications and challenges of adsorption-based carbon capture technologies[J].Chinese Science Bulletin,2021,66(22):2861-2877. doi:10.1360/tb-2021-0017 | |
40 | 罗双江,白璐,单玲珑,等 .膜法二氧化碳分离技术研究进展及展望[J].中国电机工程学报,2021,41(4):1209-1216. |
LUO S J, BAI L, SHAN L L,et al .Research progress and prospect in membrane-mediated CO2 separation[J].Proceedings of the CSEE,2021,41(4):1209-1216. | |
41 | LUIS P, GERNEN T V, BRUGGEN B V D .Recent developments in membrane-based technologies for CO2 capture[J].Progress in Energy & Combustion Science,2012,38(3):419-448. doi:10.1016/j.pecs.2012.01.004 |
42 | ZOU X, ZHU G .Microporous organic materials for membrane based gas separation[J].Advanced Materials,2018,30(3):1700750. doi:10.1002/adma.201700750 |
43 | 孙亚伟,谢美连,刘庆岭,等 .膜法分离燃煤电厂烟气中CO2的研究现状及进展[J].化工进展,2017,36(5):1880-1889. doi:10.16085/j.issn.1000-6613.2017.05.041 |
SUN Y W, XIE M L, LIU Q L,et al .Membrane-based carbon dioxide separation from flue gases of coal-fired power plant:current status and developments[J].Chemical Industry and Engineering Progress,2017,36(5):1880-1889. doi:10.16085/j.issn.1000-6613.2017.05.041 | |
44 | KOROS W J, ZHANG C .Materials for next-generation molecularly selective synthetic membranes[J].Nature materials,2017,16(3):289-297. doi:10.1038/nmat4805 |
45 | ZHANG Z .Comparisons of various absorbent effects on carbon dioxide capture in membrane gas absorption (MGA) process[J].Journal of Natural Gas Science and Engineering,2016,31:589-595. doi:10.1016/j.jngse.2016.03.052 |
46 | 李小森,鲁涛 .二氧化碳分离技术在烟气分离中的发展现状[J].现代化工,2009,29(4):25-30. doi:10.3321/j.issn:0253-4320.2009.04.006 |
LI X S, LU T .Present development situation of techniques separating carbon dioxide separation techniques infrom flue gas separation[J].Modern Chemical Industry,2009,29(4):25-30. doi:10.3321/j.issn:0253-4320.2009.04.006 | |
47 | 张书勤,胡耀强,张春威,等 .油井采收气中CO2分离技术[J].应用化工,2018,47(6):1241-1245. doi:10.3969/j.issn.1671-3206.2018.06.040 |
ZHAG S Q, HU Y Q, ZHANG C W,et al .CO2 separation technology from oil well gas[J].Applied Chemical Industry,2018,47(6):1241-1245. doi:10.3969/j.issn.1671-3206.2018.06.040 | |
48 | VERRECCHIA G, CAFIERO L, DE CAPRARIIS B,et al .Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption[J].Fuel,2020,276:118041. doi:10.1016/j.fuel.2020.118041 |
49 | 陆诗建,黄凤敏,李清方,等 .燃烧后CO2捕集技术与工程进展[J].现代化工,2015,35(6):48-52. |
LU S J, HUANG F M, LI Q F,et al .Advances in technology and project of post-combustion CO2 capture[J].Modern Chemical Industry,2015,35(6):48-52. | |
50 | WANG S, LI X, WU H,et al .Advances in high permeability polymer-based membrane materials for CO2 separations[J].Energy & Environmental Science,2016,9(6):1863-1890. doi:10.1039/c6ee00811a |
51 | DE AQUINO T F, ESTEVAM S T, VIOLA V O,et al .CO2 adsorption capacity of zeolites synthesized from coal fly ashes[J].Fuel,2020,276:118143. doi:10.1016/j.fuel.2020.118143 |
52 | 黄斌,许世森,郜时旺,等 .华能北京热电厂CO2捕集工业试验研究[J].中国电机工程学报,2009,29(17):14-20. doi:10.3321/j.issn:0258-8013.2009.17.003 |
HUANG B, XU S S, GAO S W,et al .Industrial test of CO2 capture in Huaneng Beijing coal-fired power station[J].Proceedings of the CSEE,2009,29(17):14-20. doi:10.3321/j.issn:0258-8013.2009.17.003 | |
53 | 刘飞 .胺基两相吸收剂捕集二氧化碳机理研究[D].杭州:浙江大学,2020. |
LIU F .Study on mechanism of amine based biphasic solvents for CO2 capture[D].Hangzhou:Zhejiang University,2020. | |
54 | National Energy Technology Laboratory (U.S).Cement kiln flue gas recovery scrubber project[R]. Pennsylvania:National Energy Technology Laboratory,2001. doi:10.2172/789334 |
55 | 刘仁越 .产业发展仍具韧性 碳中和目标实现之路径[J].水泥工程,2021(2):1-7. |
LIU R Y .Cement industrial development still remains resilient and the path to achieve the goal of carbon neutrality[J].Cement Engineering,2021(2):1-7. | |
56 | 吴涛,桑圣欢,祁亚军,等 .水泥厂碳捕集工艺技术[J].水泥技术,2020(4):90-95. |
WU T, SANG S H, QI Y J,et al .Carbon capture technology in cement plant[J].Cement Technology,2020(4):90-95. | |
57 | 王尧 .基于钢铁厂碳捕集的CCUS-EOR全流程项目技术经济评价研究[D].北京:华北电力大学,2018. |
WANG Y .Techno-eeonomie assessment of a full-chain CCUS-EOR project based on carbon capture of iron/steel industry[D].Beijing:North China Electric Power University,2018. | |
58 | SAINI D .Simultaneous CO2-EOR and storage projects[M].Berlin:Springer,2017:11-19. doi:10.1007/978-3-319-56074-8_2 |
59 | 梁嘉能 .工业碳捕集与封存(CCS)和人工林固碳的对比分析[D].广州:华南理工大学,2017. |
LIANG J N .The Comparison between carbon capture and storage (CCS) and artificial forest carbon sequestration[D].Guangzhou:South China University of Technology,2017. | |
60 | TAN L S, SHARIFF A M, LAU K K,et al .Impact of high pressure on high concentration carbon dioxide capture from natural gas by monoethanolamine/N-methyl-2-pyrrolidone solvent in absorption packed column[J].International Journal of Greenhouse Gas Control,2015,34:25-30. doi:10.1016/j.ijggc.2014.12.020 |
61 | 洪宗平,叶楚梅,吴洪,等.天然气脱碳技术研究进展[J].化工学报,2021,72(12):6030-6048. doi:10.11949/0438-1157.20210855 |
HONG Z P, YE C M, WU H,et al .Research progress in CO2 removal technology of natural gas[J].CIESC Journal,2021,72(12):6030-6048. doi:10.11949/0438-1157.20210855 | |
62 | U.S.Department of Energy .Tampa electric integrated gasification combined-cycle project[EB/OL].(2000-07-31)[2022-03-04].. |
63 | 闫振宇 .吸收水合法回收IGCC合成气中CO2的基础研究[D].北京:中国石油大学,2017. |
YAN Z Y .Fundamental research on absorption-hydration method to separate and recover CO2 from IGCC syngas[D].Beijing:China University of Petroleum,2017. | |
64 | LASHAKI M J, KHIAVI S, SAYARI A .Stability of amine-functionalized CO2 adsorbents:a multifaceted puzzle[J].Chemical Society Reviews,2019,48(12):3320-3405. |
65 | RUFFORD T E, SMART S, WATSON G C Y,et al .The removal of CO2 and N2 from natural gas:a review of conventional and emerging process technologies[J].Journal of Petroleum Science and Engineering,2012,94:123-154. doi:10.1016/j.petrol.2012.06.016 |
66 | LI G, XIAO P, ZHANG J,et al .The role of water on postcombustion CO2 capture by vacuum swing adsorption:bed layering and purge to feed ratio[J].AICHE Journal,2014,60(2):673-689. doi:10.1002/aic.14281 |
67 | 任德庆,高洪波,纪文明 .变压吸附脱碳技术在高含二氧化碳天然气开发应用[J].中国石油和化工标准与质量,2012,33(16):146-147. doi:10.3969/j.issn.1673-4076.2012.16.123 |
REN D Q, GAO H B, JI W M .Application of pressure swing adsorption decarbonization technology in the development of natural gas with high carbon dioxide content[J].China Petroleum and Chemical Standard and Quality,2012,33(16):146-147. doi:10.3969/j.issn.1673-4076.2012.16.123 | |
68 | 黄绍兰,童华,王京刚,等 .CO2捕集回收技术研究[J].环境污染与防治,2008,30(12):77-82. doi:10.3969/j.issn.1001-3865.2008.12.019 |
HUANG S L, TONG H, WANG J G,et al .Review of CO2 trapping and recycling methods[J].Environmental Pollution & Control,2008,30(12):77-82. doi:10.3969/j.issn.1001-3865.2008.12.019 | |
69 | OKUMURA T, YOSHIZAWA K, NUMAGUCHI R,et al .Demonstration plant of the Kawasaki CO2 capture (KCC) system with solid sorbent for coal-fired power station[C]//14th Greenhouse Gas Control Technologies Conference,Melbourne,Australia.2018:21-26. |
70 | TAGLIABUE M, FARRUSSENG D, VALENCIA S,et al .Natural gas treating by selective adsorption:material science and chemical engineering interplay[J].Chemical Engineering Journal,2009,155(3):553-566. doi:10.1016/j.cej.2009.09.010 |
71 | CARREON M A, LI S, FALCONER J L,et al.Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J].Journal of the American Chemical Society,2008,130(16):5412-5413. doi:10.1021/ja801294f |
72 | BAKER R W, LOKHANDWALA K .Natural gas processing with membranes:an overview[J].Industrial & Engineering Chemistry Research,2008,47(7):2109-2121. doi:10.1021/ie071083w |
73 | HAN Y, SALIM W, CHEN K K,et al .Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas[J].Journal of Membrane Science,2019,575:242-251. doi:10.1016/j.memsci.2019.01.024 |
74 | MAQSOOD K, MULLICK A,ALI A,et al .Cryogenic carbon dioxide separation from natural gas:a review based on conventional and novel emerging technologies[J].Reviews in Chemical Engineering,2014,30(5):453-477. doi:10.1515/revce-2014-0009 |
[1] | Yuhang SUN, Chao LI, Zhengrong WANG, Luchang SUN, Kailiang WANG, Ximing HU, Mengxiang FANG, Feng ZHANG. Study on CO2 Absorption and Regeneration Property of Flue Gas From Methyldiethanolamine-Amine Mixture System [J]. Power Generation Technology, 2024, 45(3): 468-477. |
[2] | Hongwei ZHANG, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Study on the Characteristics of Heavy Metal Lead in Desulfurization Sludge Solidified by Coal-Fired Fly Ash in Power Plant [J]. Power Generation Technology, 2024, 45(3): 527-534. |
[3] | Hanxiao LIU, Shuiyuan LUO, Xiaowei LIU. Study on Emission Characteristics, Test and Capture Technology of CO2 in Industrial Flue Gas [J]. Power Generation Technology, 2024, 45(1): 62-68. |
[4] | Rongrong ZHAI, Qing WEI, Lingjie FENG, Gexun SUN. Analysis of Energy Consumption Characteristics of Carbon Capture System in Coupled Membrane Condenser [J]. Power Generation Technology, 2023, 44(5): 667-673. |
[5] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[6] | Zhigang GAO, Fuchun CHEN, Jiawei WANG, Tao WANG, Yongsheng ZHANG. Study on Mercury Emissions and Ash Characteristics of 600 MW Brown Coal-Fired Unit [J]. Power Generation Technology, 2023, 44(4): 543-549. |
[7] | Zhigang LUO, Chengbing HE, Haoran MENG, Guodong LIU, Peng SHEN, Jun ZHANG, Haoliang ZHANG. Research on Optimization Method of Precise Ammonia Injection in SCR de-NO x System of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(4): 525-533. |
[8] | Haiguang WANG, Yongfeng LIU, Jun ZHANG. Preparation of Nitrogen Doped Mesoporous Carbon Supported Cobalt Catalyst and Its Performance for Removal of CO in Hydrogen-Rich Gas [J]. Power Generation Technology, 2023, 44(3): 373-381. |
[9] | Taozhu YIN, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Preparation of Sulfur-doped Porous Carbon and Its Electro-adsorption Performance for Heavy Metals in Desulfurization Wastewater [J]. Power Generation Technology, 2023, 44(3): 382-391. |
[10] | Pan JI. Study on Removal and Distribution Mechanism of Ammonia in Flue Gas of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(3): 392-398. |
[11] | Jiaqi PENG, Haiping XIAO, Zhuyu DONG, Baomin SUN, Ling BAI, Zhichun SUN. Data-driven NO x Stability Evaluation [J]. Power Generation Technology, 2023, 44(2): 163-170. |
[12] | Hanxiao LIU, Gaofei GUO. Study on Hg Removal Characteristics of Fabric Filter [J]. Power Generation Technology, 2023, 44(2): 193-200. |
[13] | Cunqin RUAN, Zhigang HONG, Peican LAI, Jianhua ZHANG, Xikun LIN, Jiang ZHOU, Qianwei FENG, Yang ZHANG. Research on Performance Prediction of Coal-fired Power Plant Denitrification Device Based on Online Monitoring Data [J]. Power Generation Technology, 2023, 44(1): 100-106. |
[14] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[15] | Hanxiao LIU, Gaofei GUO, Zhaomei CHEN. Study on WESP Multi-pollutant Emission Reduction and Energy Efficiency Test of Ultra-low Emission Unit [J]. Power Generation Technology, 2023, 44(1): 94-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||