Power Generation Technology ›› 2024, Vol. 45 ›› Issue (2): 331-340.DOI: 10.12096/j.2096-4528.pgt.22168
• New Energy • Previous Articles Next Articles
Siqi GONG1, Zaipeng YUN2, Ming XU1, Le AO2, Chufu LI1, Kai HUANG2, Chen SUN2
Received:
2023-01-06
Published:
2024-04-30
Online:
2024-04-29
Contact:
Ming XU
Supported by:
CLC Number:
Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst[J]. Power Generation Technology, 2024, 45(2): 331-340.
组分 | CO | H2 | N2 | CO2 | O2 | H2O |
---|---|---|---|---|---|---|
摩尔分数/% | 4.8 | 8.0 | 1.0 | 29.9 | 6.4 | 49.9 |
Tab. 1 Inlet component parameters
组分 | CO | H2 | N2 | CO2 | O2 | H2O |
---|---|---|---|---|---|---|
摩尔分数/% | 4.8 | 8.0 | 1.0 | 29.9 | 6.4 | 49.9 |
参数 | 数值 |
---|---|
催化剂孔隙率 | 0.61 |
催化剂渗透率 | 10-6 |
发射率 | 0.75 |
外界温度 | 293.15 |
H2转化活化能 | 6.225×104 |
H2转化指前因子 | 8.193×105 |
CO转化活化能 | 8.784×104 |
CO转化指前因子 | 7.46×106 |
Tab. 2 Physical parameters
参数 | 数值 |
---|---|
催化剂孔隙率 | 0.61 |
催化剂渗透率 | 10-6 |
发射率 | 0.75 |
外界温度 | 293.15 |
H2转化活化能 | 6.225×104 |
H2转化指前因子 | 8.193×105 |
CO转化活化能 | 8.784×104 |
CO转化指前因子 | 7.46×106 |
1 | 周原冰,杨方,余潇潇,等 .中国能源电力碳中和实现路径及实施关键问题[J].中国电力,2022,55(5):1-11. |
ZHOU Y B, YANG F, YU X X,et al .Realization pathways and key problems of carbon neutrality in China’s energy and power system[J].Electric Power,2022,55(5):1-11. | |
2 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
3 | 贠保记,张恩硕,张国,等 .考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J].电力系统保护与控制,2022,50(22):11-19. |
YUN B J, ZHANG E S, ZHANG G,et al .Optimal operation of an integrated energy system considering integrated demand response and a “dual carbon” mechanism[J].Power System Protection and Control,2022,50(22):11-19. | |
4 | 严中华,王建功,朱英刚,等 .考虑碳排放流理论的风-碳捕集-电转气联合新型中长期调度方式[J].智慧电力,2022,50(6):14-21. doi:10.3969/j.issn.1673-7598.2022.06.004 |
YAN Z H, WANG J G, ZHU Y G,et al .New medium-long term dispatching mode of wind-carbon capture P2G combined system considering carbon emission flow theory[J].Smart Power,2022,50(6):14-21. doi:10.3969/j.issn.1673-7598.2022.06.004 | |
5 | 廖跃洪,陈洁,杨彦飞,等 .考虑碳捕集电厂综合灵活运行下的含P2G和光热电站虚拟电厂优化调度[J].电力建设,2022,43(4):20-27. doi:10.12204/j.issn.1000-7229.2022.04.003 |
LIAO Y H, CHEN J, YANG Y F,et al .Optimal scheduling of virtual power plant with P2G and photo-thermal power plant considering the flexible operation of carbon capture power plants[J].Electric Power Construction,2022,43(4):20-27. doi:10.12204/j.issn.1000-7229.2022.04.003 | |
6 | 严斐 .中国电力行业碳排放省域聚类及影响因素差异分析[D].北京:华北电力大学,2019. |
YAN F .Provincial clustering of carbon emissions in China’s power industry and analysis of the differences of influencing factorss[D].Beijing:North China Electric Power University,2019. | |
7 | CHOUDHURY A, CHANDRA H, ARORA A .Application of solid oxide fuel cell technology for power generation:a review[J].Renewable and Sustainable Energy Reviews,2013,20:430-442. doi:10.1016/j.rser.2012.11.031 |
8 | 龚思琦,曾洪瑜,史翊翔,等 .基于甲烷催化部分氧化的SOFC性能研究[J].燃烧科学与技术,2019,25(1):60-65. |
GONG S Q, ZENG H Y, SHI Y X,et al .Study of performance of SOFC based on catalytic partial oxidation of methane[J].Journal of Combustion Science and Technology,2019,25(1):60-65. | |
9 | GONG S Q, ZENG H Y, LIN J,et al .A robust flat-chip solid oxide fuel cell coupled with catalytic partial oxidation of methane[J].Journal of Power Sources,2018,402:124-132. doi:10.1016/j.jpowsour.2018.09.017 |
10 | SHARAF O Z, ORHAN M F .An overview of fuel cell technology:fundamentals and applications[J].Renewable and Sustainable Energy Reviews,2014,32:810-853. doi:10.1016/j.rser.2014.01.012 |
11 | KIRUBAKARAN A, JAIN S, NEMA R K .A review on fuel cell technologies and power electronic interface[J].Renewable and Sustainable Energy Reviews,2009,13(9):2430-2440. doi:10.1016/j.rser.2009.04.004 |
12 | 曾洪瑜,史翊翔,蔡宁生 .燃料电池分布式供能技术发展现状与展望[J].发电技术,2018,39(2):165-170. doi:10.12096/j.2096-4528.pgt.2018.026 |
ZENG H Y, SHI Y X, CAI N S .Development and prospect of fuel cell technology for distributed power system[J].Power Generation Technology,2018,39(2):165-170. doi:10.12096/j.2096-4528.pgt.2018.026 | |
13 | 季明彬,李大钧,龚思琦,等 .SOFC尾气催化燃烧特性[J].燃烧科学与技术,2021,27(2):201-207. |
JI M B, LI D J, GONG S Q,et al .Catalytic combustion characteristics of SOFC tail gas[J].Journal of Combustion Science and Technology,2021,27(2):201-207. | |
14 | 陈星 .固体氧化物燃料电池系统优化及后燃烧室催化燃烧特性分析[D].包头:内蒙古科技大学,2019. |
CHEN X .Optimization of solid oxide fuel cell system and analysis of catalytic combustion characteristics of afterburner[D].Baotou:Inner Mongolia University of Science & Technology,2019. | |
15 | VOLTZ S E, MORGAN C R,LIEDERMAN, JACOB D,et al .Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts[J].Industrial & Engineering Chemistry Product Research and Development,1973,12(4):294-301. doi:10.1021/i360048a006 |
16 | CONAIRE M Ó, CURRAN H J, SIMMIE J M,et al .A comprehensive modeling study of hydrogen oxidation[J].International Journal of Chemical Kinetics,2004,36(11):603-622. doi:10.1002/kin.20036 |
17 | LUCCI F, FROUZAKIS C E, MANTZARAS J .Three-dimensional direct numerical simulation of turbulent channel flow catalytic combustion of hydrogen over platinum[J].Proceedings of the Combustion Institute,2013,34(2):2295-2302. doi:10.1016/j.proci.2012.06.110 |
18 | RANKOVIC N, NICOLLE A, BERTHOUT D,et al .Kinetic modeling study of the oxidation of carbon monoxide-hydrogen mixtures over Pt/Al2O3 and Rh/Al2O3 catalysts[J].The Journal of Physical Chemistry C,2011,115(41):20225-20236. doi:10.1021/jp205476y |
19 | KÉROMNÈS A, METCALFE W K, HEUFER K A,et al .An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J].Combustion and Flame,2013,160(6):995-1011. doi:10.1016/j.combustflame.2013.01.001 |
20 | CHEN J J, WANG Q, HE Z X,et al .Numerical simulation on catalytic combustion of hydrogen inside micro tube[J].Advanced Materials Research,2011,354/355:57-61. doi:10.4028/www.scientific.net/amr.354-355.57 |
21 | SUNG J G, KIM T, JUNG H K,et al .Catalytic combustion of SOFC stack flue gas over CuO and Mn2O3 supported by La0.8Sr0.2Mn0.67Cu0.33O3 perovskite[J].AIChE Journal,2018(3):940-949. doi:10.1002/aic.15980 |
22 | LEE T H, KIM K D, JUNG U,et al .Evaluation of monolith catalyst in catalytic combustion of anode off-gas for solid oxide fuel cell system[J].Catalysis Today,2023,411/412:2-8. doi:10.1016/j.cattod.2023.02.009 |
23 | 张宏艳,牟元平,常志伟 .汽车尾气净化三效催化剂研究进展[J].化工科技,2006,14(5):70-72. doi:10.3969/j.issn.1008-0511.2006.05.017 |
ZHANG H Y, MU Y P, CHANG Z W .Research and development of three way catalyst for purifying automobile exhaust[J].Science & Technology in Chemical Industry, 2006,14(5):70-72. doi:10.3969/j.issn.1008-0511.2006.05.017 | |
24 | 魏伟,史庆南,魏坤霞 .汽车尾气三元净化催化剂的研究新进展[J].贵金属,2002,23(2):61-65. doi:10.3969/j.issn.1004-0676.2002.02.013 |
WEI W, SHI Q N, WEI K X .New development of three-way catalysts for purifying automotive exhaust gas[J].Precious Metals,2002,23(2):61-65. doi:10.3969/j.issn.1004-0676.2002.02.013 | |
25 | TISCHER S, JIANG Y, HUGHES K W,et al .Three-way-catalyst modeling:a comparison of 1D and 2D simulations[C]//SAE Technical Paper Series.400 Commonwealth Drive,Warrendale,PA,United States:SAE International,2007:1071. doi:10.4271/2007-01-1071 |
26 | 马丽萍,宁平,张爱敏,等 .汽车尾气三效催化器排气系统冷启动阶段数值模拟[J].化工学报,2005,56(11):2124-2130. doi:10.3321/j.issn:0438-1157.2005.11.017 |
MA L P, NING P, ZHANG A M,et al .Mathematical simulation of automotive exhaust catalytic converter in exhaust system of cold-start engine[J].Journal of Chemical Industry and Engineering,2005,56(11):2124-2130. doi:10.3321/j.issn:0438-1157.2005.11.017 | |
27 | DI MAIO D, BEATRICE C, FRAIOLI V,et al .Modeling of three-way catalyst dynamics for a compressed natural gas engine during lean-rich transitions[J].Applied Sciences,2019,9(21):4610. doi:10.3390/app9214610 |
28 | 沈人杰,路巧艳,崔阳,等 .三元催化转化器内部流场的数值模拟[J].计算机与应用化学,2014,31(12):1428-1432. |
SHEN R J, LU Q Y, CUI Y,et al .Numerical simulation for the internal flow of the three-way catalytic converter[J].Computers and Applied Chemistry,2014,31(12):1428-1432. | |
29 | 吴国正,马丽萍 .汽车尾气三元催化剂的动力学研究[J].广东化工,2016,43(8):70-71. doi:10.3969/j.issn.1007-1865.2016.08.032 |
WU G Z, MA L P .The kinetic study on three-way catalysis for automobile exhaust gas[J].Guangdong Chemical Industry,2016,43(8):70-71. doi:10.3969/j.issn.1007-1865.2016.08.032 | |
30 | RAMANATHAN K, SHARMA C S .Kinetic parameters estimation for three way catalyst modeling[J].Industrial & Engineering Chemistry Research,2011,50(17):9960-9979. doi:10.1021/ie200726j |
31 | CHATTERJEE D, DEUTSCHMANN O, WARNATZ J .Detailed surface reaction mechanism in a three-way catalyst[J].Faraday Discussions,2001(119):371- |
384 | . doi:10.1023/a:1010650624155 |
[1] | Sike SHAN, Hanxiao LIU, Meiling LIU, Shuai WANG, Ying CUI. Review of Carbon Footprint for Thermal Power Industry in China [J]. Power Generation Technology, 2024, 45(4): 575-589. |
[2] | Zhenyu ZHAO, Geriletu BAO, Xinxin LI. Optimization and Scheduling of Integrated Energy Systems With Carbon Capture and Storage-Power to Gas Based on Information Gap Decision Theory [J]. Power Generation Technology, 2024, 45(4): 651-665. |
[3] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[4] | Jiahai YUAN, Yuelin HU, Jian ZHANG. The Carbon Emission Efficiency of China’s Listed Thermal Power Companies: An Improved Three-Stage Slack Based Measure-Data Envelopment Analysis Model [J]. Power Generation Technology, 2024, 45(3): 458-467. |
[5] | Yuhang SUN, Chao LI, Zhengrong WANG, Luchang SUN, Kailiang WANG, Ximing HU, Mengxiang FANG, Feng ZHANG. Study on CO2 Absorption and Regeneration Property of Flue Gas From Methyldiethanolamine-Amine Mixture System [J]. Power Generation Technology, 2024, 45(3): 468-477. |
[6] | Ruiyu ZHANG, Yuqing WANG, Jiawei REN. Characteristics Research of a Micro-Tubular Solid Oxide Fuel Cell System Based on Catalytic Partial Oxidation of Propane [J]. Power Generation Technology, 2024, 45(3): 486-493. |
[7] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[8] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[9] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[10] | Rongrong ZHAI, Qing WEI, Lingjie FENG, Gexun SUN. Analysis of Energy Consumption Characteristics of Carbon Capture System in Coupled Membrane Condenser [J]. Power Generation Technology, 2023, 44(5): 667-673. |
[11] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[12] | Siqin CHEN, Yinan ZHU, Xiaochen LI, Xuehai WANG. Research on Optimization Method of Coal Blending for Carbon Emission Reduction Based on Bi-level Programming [J]. Power Generation Technology, 2023, 44(2): 155-162. |
[13] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[14] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[15] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||