Power Generation Technology ›› 2023, Vol. 44 ›› Issue (5): 674-684.DOI: 10.12096/j.2096-4528.pgt.22017
• Carbon Neutrality • Previous Articles Next Articles
Li WANG1, Huan ZHANG1, Yi YE2, Xinglei ZHAO2
Received:
2022-01-25
Published:
2023-10-31
Online:
2023-10-30
Supported by:
CLC Number:
Li WANG, Huan ZHANG, Yi YE, Xinglei ZHAO. Formulation Study of N-Aminoethyl Piperazine and Sodium Glycine CO2 Absorbent[J]. Power Generation Technology, 2023, 44(5): 674-684.
能耗 | 30%MEA | 35%AEP+5% SG+1%柠檬酸 |
---|---|---|
Qrea/kJ | 10.50 | 22.98 |
Qhea/kJ | 15.21 | 34.46 |
Qeav/kJ | 10.53 | 15.38 |
总能耗Q/kJ | 37.24 | 72.82 |
单位能耗q/(kJ/mol) | 206.87 | 136.75 |
Fig. 1 Calculation data of regeneration energy consumption
能耗 | 30%MEA | 35%AEP+5% SG+1%柠檬酸 |
---|---|---|
Qrea/kJ | 10.50 | 22.98 |
Qhea/kJ | 15.21 | 34.46 |
Qeav/kJ | 10.53 | 15.38 |
总能耗Q/kJ | 37.24 | 72.82 |
单位能耗q/(kJ/mol) | 206.87 | 136.75 |
1 | 冯伟忠,李励 .“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 |
FENG W Z, LI L .Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under “double carbon”targets[J].Power Generation Technology,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 | |
2 | CHIMIENTI G, DE PADOVA D, ADAMO M,et al .Effects of global warming on mediterranean coral forests[J].Scientific Reports,2021,11(1):1-14. doi:10.1038/s41598-021-00162-4 |
3 | WANG N, AKIMOTO K, NEMET G F .What went wrong?Learning from three decades of carbon capture,utilization and sequestration (CCUS) pilot and demonstration projects[J].Energy Policy,2021,158:112546. doi:10.1016/j.enpol.2021.112546 |
4 | 张茜芸,仲兆平,姚杰 .双碳背景下我国能源产业降碳的主要路径[J].能源科技,2021,19(3):3-6. |
ZHANG Q Y, ZHONG Z P, YAO J .Main path of carbon reduction for China’s energy industry under the background of carbon emission peak and carbon neutrality[J].Energy Science and Technology,2021,19(3):3-6. | |
5 | KILIAN W, REUTER J .Low-energy structure of little Higgs models[J].Physical Review D,2004,70(1):015004. doi:10.1103/physrevd.70.015004 |
6 | PULIDO A, CHEN L, KACZOROWSKI T,et al .Functional materials discovery using energy-structure-function maps[J].Nature,2017,543(7647):657-664. doi:10.1038/nature21419 |
7 | 韩涛,赵瑞,张帅,等 .燃煤电厂二氧化碳捕集技术研究及应用[J].煤炭工程,2017,49(5):24-28. |
HAN T, ZHAO R, ZHANG S,et al .Research and application of carbon dioxide capture technology in coal-fired power plants[J].Coal Engineering,2017,49(5):24-28. | |
8 | 蒋敏华,黄斌 .燃煤发电技术发展展望[J].中国电机工程学报,2012,32(29):1-8. |
JIANG M H, HUANG B .Prospects on coal-fired power generation technology development[J].Proceedings of the CSEE,2012,32(29):1-8. | |
9 | 于海琴,李进,安洪光,等 .火力发电企业 CO2排放量和减排分析[J].北京交通大学学报,2010,34(3):101-105. |
YU H Q, LI J, AN H G,et al .Analysis on carbon dioxide emission and reduction of thermal power plant[J].Beijing Jiaotong University,2010,34(3):101-105. | |
10 | 吕广忠,李振泉,李向良,等 .燃煤电厂 CO2捕集驱油封存技术及应用[J].科技导报,2014,32(1):40-45. |
LÜ G Z, LI Z Q, LI X L,et al .Technology and application of CO2 capture, utilization and storage for coal-fired power plant[J].Technology Review,2014,32(1):40-45. | |
11 | JIANG K, ASHWORTH P .The development of carbon capture utilization and storage (CCUS) research in China:a bibliometric perspective[J].Renewable and Sustainable Energy Reviews,2020,138:110521. doi:10.1016/j.rser.2020.110521 |
12 | 严中华,王建功,朱英刚,等 .考虑碳排放流理论的风-碳捕集-电转气联合新型中长期调度方式[J].智慧电力,2022,50(6):14-21. doi:10.3969/j.issn.1673-7598.2022.06.004 |
YAN Z H, WANG J G, ZHU Y G,et al .New medium-long term dispatching mode of wind-carbon capture-P2G combined system considering carbon emission flow theory[J].Smart Power,2022,50(6):14-21. doi:10.3969/j.issn.1673-7598.2022.06.004 | |
13 | 贠保记,张恩硕,张国,等 .考虑综合需求响应与“双碳”机制的综合能源系统优化运行[J].电力系统保护与控制,2022,50(22):11-19. |
YUN B J, ZHANG E S, ZHANG G,et al .Optimal operation of an integrated energy system considering integrated demand response and a “dual carbon”mechanism[J].Power System Protection and Control,2022,50(22):11-19. | |
14 | 马喜平,沈渭程,甄文喜,等 .基于低碳目标的电气综合能源系统优化调度策略研究[J].电网与清洁能源,2021,37(12):116-122. doi:10.3969/j.issn.1674-3814.2021.12.016 |
MA X P, SHEN W C, ZHEN W X,et al .A study on the optimal scheduling strategy of electric-gas-thermal integrated energy system based on low carbon target[J].Power System and Clean Energy,2021,37(12):116-122. doi:10.3969/j.issn.1674-3814.2021.12.016 | |
15 | 黄斌,刘练波,许世森,等 .燃煤电站 CO2捕集与处理技术的现状与发展[J].电力设备,2008,9(5):3-6. |
HUANG B, LIU L B, XU S S,et al .Current status and development of CO2 capture and treatment technology in coal-fired power plants[J].Electric Power Equipment,2008,9(5):3-6. | |
16 | FIGUEROA J D, FOUT T, PLASYNSKI S,et al .Advances in CO2 capture technology:the US department of energy’s carbon sequestration program[J].International Journal of Greenhouse Gas Control,2008,2(1):9-20. doi:10.1016/s1750-5836(07)00094-1 |
17 | LI B, DUAN Y, LUEBKE D,et al .Advances in CO2 capture technology:a patent review[J].Applied Energy,2013,102:1439-1447. doi:10.1016/j.apenergy.2012.09.009 |
18 | BORHANI T N, WANG M .Role of solvents in CO2 capture processes:the review of selection and design methods[J].Renewable and Sustainable Energy Reviews,2019,114:109299. doi:10.1016/j.rser.2019.109299 |
19 | GOTO K, OKABE H, SHIMIZU S,et al .Evaluation method of novel absorbents for CO2 capture[J].Energy Procedia,2009,1(1):1083-1089. doi:10.1016/j.egypro.2009.01.143 |
20 | MORES P, SCENNA N, MUSSATI S .Post-combustion CO2 capture process:equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution[J].Chemical Engineering Research and Design,2011,89(9):1587-1599. doi:10.1016/j.cherd.2010.10.012 |
21 | OH S Y, BINNS M, CHO H,et al .Energy minimization of MEA-based CO2 capture process[J].Applied Energy,2016,169:353-362. doi:10.1016/j.apenergy.2016.02.046 |
22 | AYANDUNTAN O L, RAPHAEL O I .Kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous MEA-MDEA blends during CO2 absorption from flue gas streams[J].Industrial & Engineering Chemistry Research,2006,45(8):2601-2607. doi:10.1021/ie050560c |
23 | HO-JUN S, SEUNGMOON L, SANJEEV M,et al .Solubilities of carbon dioxide in aqueous solutions of sodium glycinate[J].Fluid Phase Equilibria,2006,246(1/2):1-5. doi:10.1016/j.fluid.2006.05.012 |
24 | SINGH P, NIEDERER J P M, VERSTEEG G F .Structure and activity relationships for amine-based CO2 absorbents-I[J].International Journal of Greenhouse Gas Control,2007,1(1):5-10. doi:10.1016/s1750-5836(07)00015-1 |
25 | SINGH P, NIEDERER J P M, VERSTEEG G F .Structure and activity relationships for amine-based CO2 absorbents-II[J].Chemical Engineering Research and Design,2009,87(2):135-144. doi:10.1016/j.cherd.2008.07.014 |
26 | CHOI J H, KIM Y E, NAM S C,et al .CO2 absorption characteristics of a piperazine derivative with primary,secondary,and tertiary amino groups[J].Korean Journal of Chemical Engineering,2016,33(11):3222-3230. doi:10.1007/s11814-016-0180-9 |
27 | VAN HOLST J, KERSTEN S R A, HOGENDOORN K J A .Physiochemical properties of several aqueous potassium amino acid salts[J].Journal of Chemical and Engineering Data,2008,53(6):1286-1291. doi:10.1021/je700699u |
28 | KUMAR P S, HOGENDOORN J A, VERSTEEG G F .Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine[J].AIChE Journal,2003,49(1):203-213. doi:10.1002/aic.690490118 |
29 | HARRIS F, KURNIA K A, MUTALIB M I A,et al .Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption[J].Journal of Chemical & Engineering Data,2009,54(1):144-147. doi:10.1021/je800672r |
30 | CAPLOW M .Kinetics of carbamate formation and breakdown[J].Journal of the American Chemical Society,1968,90(24):6795-6803. doi:10.1021/ja01026a041 |
31 | DANCKWERTS P .The reaction of CO2 with ethanolamines[J].Chemical Engineering Science,1979,34(4):443-446. doi:10.1016/0009-2509(79)85087-3 |
32 | BONENFANT D, MIMEAULT M, HAUSLER R .Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution[J].Industrial & Engineering Chemistry Research,2003,42(14):3179-3184. doi:10.1021/ie020738k |
33 | LITTEL R J, VAN SWAAIJ W P M, VERSTEEG G F .Kinetics of carbon dioxide with tertiary amines in aqueous solution[J].AIChE Journal,1990,36(11):1633-1640. doi:10.1002/aic.690361103 |
34 | CHOI J H, KIM Y E, NAM S C,et al .CO2 absorption characteristics of a piperazine derivative with primary,secondary,and tertiary amino groups[J].Korean Journal of Chemical Engineering,2016,33(11):1-9. doi:10.1007/s11814-016-0180-9 |
35 | Zohreh K, Ahad G, Amir H M S,et al .The effect of solid adsorbents in Triethanolamine (TEA) solution for enhanced CO2 absorption rate[J].Research on Chemical Intermediates,221,47:4349-4368. doi:10.1007/s11164-021-04532-5 |
36 | EIMER D, SJOVOLL M, ELDRUP N,et al .New thinking in CO2 removal[C]//Nordic Symposium.Tampere,Finland:Tampere University,2003:128-136. |
[1] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[2] | Hongwei ZHANG, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Study on the Characteristics of Heavy Metal Lead in Desulfurization Sludge Solidified by Coal-Fired Fly Ash in Power Plant [J]. Power Generation Technology, 2024, 45(3): 527-534. |
[3] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[4] | Lin WANG. Research on Closed Cycle Pipe Blowing Technology of 5 MW Supercritical Carbon Dioxide Unit Boiler [J]. Power Generation Technology, 2023, 44(5): 731-737. |
[5] | Xin TANG, Yiran QIAN, Huawei FANG, Yang LI, Siguang LI, Jingwei YI, Weixiong CHEN, Junjie YAN. A Review of Control Strategies for Supercritical Carbon Dioxide Brayton Cycle [J]. Power Generation Technology, 2023, 44(4): 492-501. |
[6] | Daocheng HU, Rui WANG, Rui ZHAO, Nannan SUN, Dong XU, Liying LIU. Research on Carbon Dioxide Capture Technology and Suitable Scenarios [J]. Power Generation Technology, 2023, 44(4): 502-513. |
[7] | Zhigang LUO, Chengbing HE, Haoran MENG, Guodong LIU, Peng SHEN, Jun ZHANG, Haoliang ZHANG. Research on Optimization Method of Precise Ammonia Injection in SCR de-NO x System of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(4): 525-533. |
[8] | Zhigang GAO, Fuchun CHEN, Jiawei WANG, Tao WANG, Yongsheng ZHANG. Study on Mercury Emissions and Ash Characteristics of 600 MW Brown Coal-Fired Unit [J]. Power Generation Technology, 2023, 44(4): 543-549. |
[9] | Taozhu YIN, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Preparation of Sulfur-doped Porous Carbon and Its Electro-adsorption Performance for Heavy Metals in Desulfurization Wastewater [J]. Power Generation Technology, 2023, 44(3): 382-391. |
[10] | Pan JI. Study on Removal and Distribution Mechanism of Ammonia in Flue Gas of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(3): 392-398. |
[11] | Hanxiao LIU, Gaofei GUO. Study on Hg Removal Characteristics of Fabric Filter [J]. Power Generation Technology, 2023, 44(2): 193-200. |
[12] | Hanxiao LIU, Gaofei GUO, Zhaomei CHEN. Study on WESP Multi-pollutant Emission Reduction and Energy Efficiency Test of Ultra-low Emission Unit [J]. Power Generation Technology, 2023, 44(1): 94-99. |
[13] | Jingji ZHU, Yishu XU, Jingying XU, Huakun WANG, Xiaowei LIU, Dunxi YU, Jingjing MA, Minghou XU. Effect of Co-firing Ammonia on Coal Volatile Flame Characteristics and Particulate Matter Formation Behaviours [J]. Power Generation Technology, 2022, 43(6): 908-917. |
[14] | Xiaowei YU, Cuijie KUANG. Application and Optimization of Urea Pyrolysis Technology in 1000MW Coal-fired Power Plant [J]. Power Generation Technology, 2022, 43(2): 367-372. |
[15] | Yaonan GAO, Haifeng CHEN, Jianyong WANG. Thermodynamic Analysis of a New Combined Cooling, Heating and Power System Using CO2 Working Fluid [J]. Power Generation Technology, 2022, 43(1): 131-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||