Power Generation Technology ›› 2021, Vol. 42 ›› Issue (2): 207-217.DOI: 10.12096/j.2096-4528.pgt.20015
• New and Renewable Energy • Previous Articles Next Articles
Received:
2020-04-01
Published:
2021-04-30
Online:
2021-04-29
Supported by:
CLC Number:
Chao LEI, Tao LI. Key Technologies and Development Status of Hydrogen Energy Utilization Under the Background of Carbon Neutrality[J]. Power Generation Technology, 2021, 42(2): 207-217.
系统 | 碱性电解水 | PEM电解水 | 固体氧化物电解水 |
电解槽 | 无贵金属催化剂,成本低;电流密度小(0.2~0.4 A/cm2);窄载荷波动范围(40%~ 110%);气体纯度低;电解液有腐蚀性和剧毒V2O5,规模可达1 000 m3/h(标准状态);体积大,电解槽较难集成;工作温度≤95 ℃;工作压力为1.6 MPa | 需贵金属催化剂,成本高;电流密度大(1.5~3 A/cm2);系统响应快,适应动态操作和0~200%宽负荷波动范围;无毒,无腐蚀性,效率高,气体纯度高,单堆可达100 m3/h(标准状态);体积小,适用于多电解槽集成兆瓦级产品;性价比提升空间大;工作温度为室温~80 ℃;工作压力高,达到3.5 MPa,并可进一步提高 | 使用热能和电能输入,电能消耗低,无贵金属催化剂;陶瓷工艺,难以加工大面积的组件;成本高;工作温度为600~900 ℃;工作压力低 |
整体系统 | 氢氧侧等压设计;系统组成和操作复杂,成本高;氢水分离器容积大,系统留存氢气量多,安全性低;氢氧不完全隔离,难以通过多电解槽集成大规模系统 | 氢氧侧可压差设计;系统组成简单、紧凑、小型化,成本低;氢水分离器容积小,系统留存氢气量少,安全性高;氢氧两侧物理隔离,便于通过电解槽集成实现,可集成10~100 MW的超大规模系统;小型系统已商业化,开启大规模系统示范应用 | 高温工作,系统复杂;成本高;大规模系统集成难;尚不具备商业化条件 |
Tab. 1 Comparison of water electrolysis technologies
系统 | 碱性电解水 | PEM电解水 | 固体氧化物电解水 |
电解槽 | 无贵金属催化剂,成本低;电流密度小(0.2~0.4 A/cm2);窄载荷波动范围(40%~ 110%);气体纯度低;电解液有腐蚀性和剧毒V2O5,规模可达1 000 m3/h(标准状态);体积大,电解槽较难集成;工作温度≤95 ℃;工作压力为1.6 MPa | 需贵金属催化剂,成本高;电流密度大(1.5~3 A/cm2);系统响应快,适应动态操作和0~200%宽负荷波动范围;无毒,无腐蚀性,效率高,气体纯度高,单堆可达100 m3/h(标准状态);体积小,适用于多电解槽集成兆瓦级产品;性价比提升空间大;工作温度为室温~80 ℃;工作压力高,达到3.5 MPa,并可进一步提高 | 使用热能和电能输入,电能消耗低,无贵金属催化剂;陶瓷工艺,难以加工大面积的组件;成本高;工作温度为600~900 ℃;工作压力低 |
整体系统 | 氢氧侧等压设计;系统组成和操作复杂,成本高;氢水分离器容积大,系统留存氢气量多,安全性低;氢氧不完全隔离,难以通过多电解槽集成大规模系统 | 氢氧侧可压差设计;系统组成简单、紧凑、小型化,成本低;氢水分离器容积小,系统留存氢气量少,安全性高;氢氧两侧物理隔离,便于通过电解槽集成实现,可集成10~100 MW的超大规模系统;小型系统已商业化,开启大规模系统示范应用 | 高温工作,系统复杂;成本高;大规模系统集成难;尚不具备商业化条件 |
项目 | 氢–天然气混合气 | 纯氢 |
对基础设施的影响 | 现有天然气管道可混入质量分数5%~20%的氢气,只需对现有管道监控和维护系统进行必要的安全改造 | 需将现有钢管改换为非腐蚀性和不可渗透的材料(如聚乙烯、纤维增强聚合物管道)并进行泄漏控制 |
对终端用户设备的影响 | 当热值保持在公差范围内时,混合气中氢质量分数在5%~20%范围内不会对终端用户设备的使用造成影响,无需改造;研究表明氢气混入的安全边际是30% | 需改造终端用户设备(燃气锅炉、热水箱、燃气灶) |
Tab. 2 Comparison of blending hydrogen into natural gas pipeline and pure hydrogen pipeline
项目 | 氢–天然气混合气 | 纯氢 |
对基础设施的影响 | 现有天然气管道可混入质量分数5%~20%的氢气,只需对现有管道监控和维护系统进行必要的安全改造 | 需将现有钢管改换为非腐蚀性和不可渗透的材料(如聚乙烯、纤维增强聚合物管道)并进行泄漏控制 |
对终端用户设备的影响 | 当热值保持在公差范围内时,混合气中氢质量分数在5%~20%范围内不会对终端用户设备的使用造成影响,无需改造;研究表明氢气混入的安全边际是30% | 需改造终端用户设备(燃气锅炉、热水箱、燃气灶) |
车型 | 储氢罐质量/kg | 储氢压强/MPa | 最高续航里程/km | 百千米耗氢量/kg | 成本交叉点/(元/kg) |
REFIRE重塑科技物流车 | 9.300 | 35 | 350 | 2.65 | 33.96 |
J6F氢燃料电池物流车 | 13.746 | 35 | 350 | 3.92 | 22.96 |
Tab. 3 Parameters of two hydrogen fuel cell logistics vehicles
车型 | 储氢罐质量/kg | 储氢压强/MPa | 最高续航里程/km | 百千米耗氢量/kg | 成本交叉点/(元/kg) |
REFIRE重塑科技物流车 | 9.300 | 35 | 350 | 2.65 | 33.96 |
J6F氢燃料电池物流车 | 13.746 | 35 | 350 | 3.92 | 22.96 |
1 | 曹蕃, 陈坤洋, 郭婷婷, 等. 氢能产业发展技术路径研究[J]. 分布式能源, 2020, 5 (1): 1- 8. |
CAO F , CHEN K Y , GUO T T , et al. Research on technological path of hydrogen energy industry development[J]. Distributed Energy, 2020, 5 (1): 1- 8. | |
2 | 赵波, 赵鹏程, 胡娟, 等. 用于波动性新能源大规模接入的氢储能技术研究综述[J]. 电器与能效管理技术, 2018, (16): 1- 7. |
ZHAO B , ZHAO P C , HU J , et al. Overview of hydrogen energy storage technology in large scale intermittent renewable energy integration application[J]. Dianqi Yu Nengxiao Guanli Jishu, 2018, (16): 1- 7. | |
3 | 李庆勋, 刘晓彤, 刘克峰. 大规模工业制氢工艺技术及其经济性比较[J]. 天然气化工(C1化学与化工), 2015, 40 (5): 79- 80. |
LI Q X , LIU X T , LIU K F . Technical and economic analysis for large-scale industrial hydrogen production[J]. Natural Gas Chemical Industry, 2015, 40 (5): 79- 80. | |
4 | 杨小彦, 陈刚, 殷海龙. 不同原料制氢工艺技术方案分析及探讨[J]. 煤化工, 2017, 45 (6): 41- 43. |
YANG X Y , CHEN G , YIN H L . Analysis and discussion of technology scheme of hydrogen production by different materials[J]. Coal Chemical Industry, 2017, 45 (6): 41- 43. | |
5 | 黄大为, 齐德卿, 于娜, 等. 利用制氢系统消纳风电弃风的制氢容量配置方法[J]. 太阳能学报, 2017, 38 (6): 1517- 1525. |
HUANG D W , QI D Q , YU N , et al. Capacity allocation method of hydrogen production system consuming abandoned wind power[J]. Acta Energiae Solaris Sinica, 2017, 38 (6): 1517- 1525. | |
6 | 贾洋洋, 仲海涛, 张智晟. 含储氢装置的分布式能源系统的优化经济调度[J]. 广东电力, 2019, 32 (11): 38- 44. |
JIA Y Y , ZHONG H T , ZHANG Z S . Optimized economic dispatch of distributed energy system with hydrogen storage device[J]. Guangdong Electric Power, 2019, 32 (11): 38- 44. | |
7 |
胡小夫, 汪洋, 田立, 等. 中高温SOFC/MGT联合发电技术研究进展[J]. 华电技术, 2019, 41 (8): 1- 5.
DOI |
HU X F , WANG Y , TIAN L , et al. Progress in intermediate and high temperature SOFC/MGT combined power generation technology[J]. Huadian Technology, 2019, 41 (8): 1- 5.
DOI |
|
8 | 王战栋, 陈洁, 张保明, 等. 风氢-混合储能系统全寿命周期经济性研究[J]. 电网与清洁能源, 2019, 35 (11): 66- 73. |
WANG Z D , CHEN J , ZHANG B M , et al. A study on life cycle economics of wind hydrogen-mixed energy storage system[J]. Power System and Clean Energy, 2019, 35 (11): 66- 73. | |
9 | 毛宗强. 中国氢能发展现状及展望[C]//中国可再生能源学会. 可再生能源发展战略论坛论文集. 2008: 7. |
MAO Z Q. Development status and prospect of hydrogen energy in China[C]//China Renewable Energy Society. Symposium of Renewable Energy Development Strategy Forum. 2008: 7. | |
10 | 中国标准化研究院, 全国氢能标准化技术委员会. 中国氢能产业基础设施发展蓝皮书(2018): 低碳低成本氢源的实现路径[M]. 北京: 中国标准出版社, 2018. |
China National Institute of Standardization , National Hydrogen Standardization Technical Committee . Blue book on infrastructure development of hydrogen energy industry in China (2018): ways to achieve low carbon and low cost hydrogen sources[M]. Beijing: Standards Press of China, 2018. | |
11 | 中国汽车技术研究中心有限公司. 中国车用氢能产业发展报告(2018)[M]. 北京: 社会科学文献出版社, 2018. |
China Automotive Technology and Research Center Co., Ltd. . Annual report on the development of automotive hydrogen industry in China (2018)[M]. Beijing: Social Sciences Academic Press, 2018. | |
12 | 国家发展改革委, 国家能源局. 能源生产和消费革命战略(2016-2030)[R]. 北京: 国家发展改革委, 国家能源局, 2016. |
National Development and Reform Commission, National Energy Administration. Energy production and consumption revolution strategy(2016-2030)[R]. Beijing: National Development and Reform Commission, National Energy Administration, 2016. | |
13 | 中国工程院. 推动能源生产和消费革命战略研究(一期)[R]. 北京: 中国工程院, 2017. |
China Academy of Engineering. Strategic research on promoting energy revolution of production and consumption (1)[R]. Beijing: China Academy of Engineering, 2017. | |
14 | 周孝信, 陈树勇, 鲁宗相. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38 (7): 1893- 1901. |
ZHOU X X , CHEN S Y , LU Z X . Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38 (7): 1893- 1901. | |
15 | 孙可, 张全明, 郑朝明, 等. 能源互联网视角下的未来配电网发展[J]. 浙江电力, 2020, 39 (1): 1- 8. |
SUN K , ZHANG Q M , ZHENG Z M , et al. Development of distribution network in the future from the perspective of energy internet[J]. Zhejiang Electric Power, 2020, 39 (1): 1- 8. | |
16 | FCH-JU. Hydrogen roadmap Europe[R]. Belgium: Publications Office of the European Union, 2019. |
17 | 柴田善朗. が国における Power to Gas の可能性[J]. エネルギ-経济, 2016, 42 (1): 32- 49. |
18 | 蔡立柱. 浅谈氢能源技术优势及发展[J]. 中国新技术新产品精选, 2015, (3): 175. |
CAI L Z . The advantages and development of hydrogen energy technology[J]. China New Technologies and Products, 2015, (3): 175. | |
19 | 李桂霞. 生物质超临界水气化制氢产物分离的气液相平衡研究[D]. 西安: 西安建筑科技大学, 2009. |
LI G X. Gas-liquid equilibrium analysis of hydrogen separation from products of biomass gasification in supercritical water[D]. Xi'an: Xi'an University of Architecture and Technology, 2009. | |
20 |
鲍君香. 太阳能制氢技术进展[J]. 能源与节能, 2018, (11): 61- 63.
DOI |
BAO J X . Progress of solar energy hydrogen production technology[J]. Energy and Energy Conservation, 2018, (11): 61- 63.
DOI |
|
21 |
王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业, 2018, 36 (6): 13- 18.
DOI |
WANG M . The status quo and trend of producing hydrogen from new energy[J]. Chemical Industry, 2018, 36 (6): 13- 18.
DOI |
|
22 |
MAZLOOMI S K , SULAIMAN N . Influencing factors of water electrolysis electrical efficiency[J]. Renewable and Sustainable Energy Reviews, 2012, 16, 4257- 4263.
DOI |
23 |
BUTTLERA A , SPLIETHOFFA H . Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquid: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82, 2440- 2454.
DOI |
24 |
MARANGIO F , SANTARELLI M , CALI M . Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production[J]. International Journal of Hydrogen Energy, 2009, 34 (3): 1143- 1158.
DOI URL |
25 | 周抗寒, 任春波, 王飞, 等. 大电流密度固体聚合物电解质水电解电极材料研究[J]. 航天医学与医学工程, 2012, 25 (5): 368- 371. |
ZHOU K H , REN C B , WANG F , et al. Study on electrode materials of high current density SPE electrolyzer[J]. Space Medicine & Medical Engineering, 2012, 25 (5): 368- 371. | |
26 |
MARINI S , SALVI P , NELLI P , et al. Advanced alkaline water electrolysis[J]. Electrochimica Acta, 2012, 82, 384- 391.
DOI URL |
27 |
GAHLEITNER G . Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications[J]. International Journal of Hydrogen Energy, 2013, 38, 2039- 2061.
DOI URL |
28 | BRISSE A , SCHEFOLD J , ZAHID M . High temperature water electrolysis in solid oxide cells[J]. Hydrogen Energy, 2008, 33 (22): 5375- 5382. |
29 |
LAGUNA-BERCERO M A . Recent advances in high temperature electrolysis using solid oxide fuel cells[J]. Power Sources, 2012, 203, 4- 16.
DOI |
30 | PRABHAKARAN P , GIANNOPOULOSC D , KÖPPELB W , et al. Cost optimisation and life cycle analysis of SOEC based power to gas systems used for seasonal energy storage in decentral systems[J]. Journal of Energy Storage, 2019, 26, 138- 150. |
31 | Sunfire. Clean and low-cost: hydrogen for industries[EB/OL]. [2020-02-18]. http://www.sunfire.de/en/applications/hydrogen. |
32 | 篠崎资志. 新しい水素エネルギ-キャリアによるエネルギ-イノベ-シヨン[J]. エネルギ-レビュ-(Energy Review), 2014, (7): 7- 10. |
33 | 董媛, 杨明, 程寒松. 有机液体储氢技术进展与应用前景[C]//2017国际清洁能源论坛论文集. 澳门, 2017: 238-255. |
DONG Y, YANG M, CHENG H S. Progress and application prospect of organic liquid hydrogen storage technology[C]//Proceedings of 2017 International Clean Energy Forum. Macao, 2017: 238-255. | |
34 | USDRIVE. Hydrogen delivery technical team roadmap[R]. California: Hydrogen Delivery Technical Team (HDTT), 2017. |
35 |
WULFA C , LINßEN J , ZAPPA P . Review of power-to-gas projects in Europe[J]. Energy Procedia, 2018, 155, 367- 378.
DOI |
36 |
JONES D R , AL-MASRY W A , DUNNILL C W . Hydrogen-enriched natural gas as a domestic fuel: an analysis based on flash-back and blow-off limits for domestic natural gas appliances within the UK[J]. Sustainable Energy Fuels, 2018, 2, 710- 723.
DOI |
37 | KPMG Public. 2050 energy scenarios: the UK gas networks role in a 2050 whole energy system[R]. London: Energy Networks Association, 2016. |
38 | 済産業省. エネルギー基本計画[EB/OL]. (2014-04-11)[2020-02-18]. http://www.enecho.meti.go.jp/category/others/basic_plan/pdf/140411.pdf. |
39 | 閣議. 日本再興戦略-JAPAN is BACK[EB/OL]. (2013-06-14)[2020-02-18]. http://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/saikou_jpn.pdf#search='%E6%97%A5%E6%9C%AC%E5%86%8D%E8%88%88%E6%88%A6%E7%95%A5%E2%94%80+JAPAN+is+BACK'. |
40 | 独立行政法人新エネルギー・産業技術総合開発機構. NEDO水素エネルギー白書-イチから知る水素社会-[M]. 東京: 株式会社日刊工業新聞社, 2015: 7- 24. |
41 | 経済産業省水素・燃料電池戦略協議会. 水素・燃料電池戦略ロードマップ[EB/OL]. (2019-03-12)[2020-02-18]. http://www.meti.go.jp/committee/kenkyukai/energy/suiso_nenryodenchi/pdf/report01_03_00.pdf. |
42 | 杨昌海, 万志, 刘正英. 氢综合利用经济性分析[J]. 电器与能效管理技术, 2019, 21 (5): 83- 87. |
YANG C H , WAN Z , LIU Z Y . Economic analysis of comprehensive utilization of hydrogen[J]. Dianqi Yu Nengxiao Guanli Jishu, 2019, 21 (5): 83- 87. |
[1] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[2] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[3] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[4] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[5] | Lingguo KONG, Jian GONG, Shihui YANG, Defu NI, Shibo WANG, Chuang LIU. Development Status and Trend of DC/DC Isolated Hydrogen Production Power Supply [J]. Power Generation Technology, 2023, 44(4): 443-451. |
[6] | Tianqi SONG, Yunting MA, Zhihui ZHANG. Operation Mode and Economy of Photovoltaic Coupled Water Electrolysis Hydrogen Production System As a Kind of Virtual Power Plant Resource [J]. Power Generation Technology, 2023, 44(4): 465-472. |
[7] | Yu LAN, Yan LONG, Zhehao ZHANG, Jingang RUAN. Technical and Economic Feasibility of Inter-Provincial Supply of Renewable Energy Hydrogen Production [J]. Power Generation Technology, 2023, 44(4): 473-483. |
[8] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[9] | Jianlin LI, Chenxi SHAO, Zedong ZHANG, Zhonghao LIANG, Fei ZENG. Analysis of Hydrogen Industry Policy and Commercialization Model [J]. Power Generation Technology, 2023, 44(3): 287-295. |
[10] | Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry [J]. Power Generation Technology, 2023, 44(3): 296-304. |
[11] | Chunyan ZHANG, Zhenlan DOU, Jun WANG, Liangliang ZHU, Xiaotong SUN, Gendi LI. Development Route of Hydrogen Production by Water Electrolysis, Hydrogen Storage and Hydrogen Supply in Power System [J]. Power Generation Technology, 2023, 44(3): 305-317. |
[12] | Yue TENG, Qian ZHAO, Tiejiang YUAN, Guohong CHEN. Key Technology Status and Outlook for Green Electricity-Hydrogen Energy- Multi-domain Applications Coupled Network [J]. Power Generation Technology, 2023, 44(3): 318-330. |
[13] | Lianpeng ZHAO, Zhenyang ZHANG, Gang AN, Shenyin YANG. Progress in Hydrogen Liquefaction Technology With Mixed Refrigerant [J]. Power Generation Technology, 2023, 44(3): 331-339. |
[14] | Shuhan ZHANG, Xiaofeng MA, Ruilin ZHANG, Yanqun ZHU, Yong HE, Zhihua WANG. An Efficient Mn-Ir Doped Supported Catalyst for PEM Water Electrolysis [J]. Power Generation Technology, 2023, 44(3): 340-349. |
[15] | Yikun HU, Junwen CAO, Wenqiang ZHANG, Bo YU, Jianchen WANG, Jing CHEN. Application Research Progress of High Temperature Solid Oxide Electrolysis Cell [J]. Power Generation Technology, 2023, 44(3): 361-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||