Power Generation Technology ›› 2023, Vol. 44 ›› Issue (3): 318-330.DOI: 10.12096/j.2096-4528.pgt.22180
• Key technologies of green hydrogen preparation, storage and multi-scenario application • Previous Articles Next Articles
Yue TENG1, Qian ZHAO1, Tiejiang YUAN2, Guohong CHEN1
Received:
2022-12-12
Published:
2023-06-30
Online:
2023-06-30
Contact:
Tiejiang YUAN
Supported by:
CLC Number:
Yue TENG, Qian ZHAO, Tiejiang YUAN, Guohong CHEN. Key Technology Status and Outlook for Green Electricity-Hydrogen Energy- Multi-domain Applications Coupled Network[J]. Power Generation Technology, 2023, 44(3): 318-330.
参数 | 电解槽类型 | ||
---|---|---|---|
AEC | SOEC | PEMEC | |
电解质 | 20%~30%NaOH或KOH | Y2O3/ZrO2 | 常用Nafion |
工作温度/℃ | 60~140 | 700~900 | <100 |
电堆效率/% | 62 | 96 | 68 |
系统效率/% | 58 | 89 | 63 |
成本/ (欧元/kg) | 6.50 | 11.2 | 11.0 |
气压/MPa | 3~4 | 1.5~5.0 | 5~10 |
电流密度/ (A/cm2) | <0.45 | 0.8~1.2 | 0.2~1.5 |
Tab. 1 Comparison of hydrogen production technologies
参数 | 电解槽类型 | ||
---|---|---|---|
AEC | SOEC | PEMEC | |
电解质 | 20%~30%NaOH或KOH | Y2O3/ZrO2 | 常用Nafion |
工作温度/℃ | 60~140 | 700~900 | <100 |
电堆效率/% | 62 | 96 | 68 |
系统效率/% | 58 | 89 | 63 |
成本/ (欧元/kg) | 6.50 | 11.2 | 11.0 |
气压/MPa | 3~4 | 1.5~5.0 | 5~10 |
电流密度/ (A/cm2) | <0.45 | 0.8~1.2 | 0.2~1.5 |
储氢方式 | 成本 | 质量储氢密度/% | 优缺点及性能 | 技术现状 | 关键技术问题 |
---|---|---|---|---|---|
高压气态 | 低 | <5.7 | 优点:充放氢速率可调。缺点:储氢密度低,对容器耐压性要求高 | 技术成熟 | 进一步提升储氢密度,降低成本 |
低温液态 | 高 | 5.1~7.4 | 优点:储氢密度高、液氢纯度高。缺点:液化能耗高、耐热性要求高 | 起步阶段 | 降低液化能耗,减少气化氢气损失 |
固体吸附 | 中 | 4.5~18.5 | 优点:安全性高、储存压力低。缺点:材料贵,存储、释放条件苛刻 | 研发阶段 | 提高吸附能力,解决储氢材料易粉化问题 |
LOHC | 高 | <6.23 | 优点:储氢密度高、储运安全度高。缺点:操作复杂,储、放条件苛刻 | 研发阶段 | 降低成本,简化复杂的化学反应过程 |
Tab. 2 Comparison of hydrogen storage technologies
储氢方式 | 成本 | 质量储氢密度/% | 优缺点及性能 | 技术现状 | 关键技术问题 |
---|---|---|---|---|---|
高压气态 | 低 | <5.7 | 优点:充放氢速率可调。缺点:储氢密度低,对容器耐压性要求高 | 技术成熟 | 进一步提升储氢密度,降低成本 |
低温液态 | 高 | 5.1~7.4 | 优点:储氢密度高、液氢纯度高。缺点:液化能耗高、耐热性要求高 | 起步阶段 | 降低液化能耗,减少气化氢气损失 |
固体吸附 | 中 | 4.5~18.5 | 优点:安全性高、储存压力低。缺点:材料贵,存储、释放条件苛刻 | 研发阶段 | 提高吸附能力,解决储氢材料易粉化问题 |
LOHC | 高 | <6.23 | 优点:储氢密度高、储运安全度高。缺点:操作复杂,储、放条件苛刻 | 研发阶段 | 降低成本,简化复杂的化学反应过程 |
运氢方式 | 运输量 | 优缺点及性能 | 应用情况 | |
---|---|---|---|---|
高压气态储氢 | 长管拖车 | 250~480 kg/车 | 技术成熟,运输量小,适用于短距离运输 | 广泛用于商品氢运输 |
集装格 | 5~10 kg/格 | 技术成熟,运输量小,适用于短距离运输 | 广泛用于商品氢运输 | |
管网 | 310~8 900 kg/h | 一次性投资高,管道材质要求高,运输效率高, 适合长距离运输 | 主要用于化工厂,小规模发展阶段, 未普及 | |
低温液态储氢 | 槽车 | 360~4 300 kg/车 | 液化氢成本和能耗高,设备要求高,适合中远距离运输 | 国外应用广泛,国内仍仅用于航天及军事领域 |
液氢槽罐车 | 2 600 kg/车 | 运输量较大,难以保证释放氢气纯度,充放氢气的设备要求高 | 试验阶段,较少应用 | |
固体吸附储氢 | 金属罐车 | 24 000 kg/车 | 运输容易,不存在逃逸问题,运输能量密度较低 | 试验阶段,少量用于燃料电池 |
Tab. 3 Comparison of hydrogen transportation methods
运氢方式 | 运输量 | 优缺点及性能 | 应用情况 | |
---|---|---|---|---|
高压气态储氢 | 长管拖车 | 250~480 kg/车 | 技术成熟,运输量小,适用于短距离运输 | 广泛用于商品氢运输 |
集装格 | 5~10 kg/格 | 技术成熟,运输量小,适用于短距离运输 | 广泛用于商品氢运输 | |
管网 | 310~8 900 kg/h | 一次性投资高,管道材质要求高,运输效率高, 适合长距离运输 | 主要用于化工厂,小规模发展阶段, 未普及 | |
低温液态储氢 | 槽车 | 360~4 300 kg/车 | 液化氢成本和能耗高,设备要求高,适合中远距离运输 | 国外应用广泛,国内仍仅用于航天及军事领域 |
液氢槽罐车 | 2 600 kg/车 | 运输量较大,难以保证释放氢气纯度,充放氢气的设备要求高 | 试验阶段,较少应用 | |
固体吸附储氢 | 金属罐车 | 24 000 kg/车 | 运输容易,不存在逃逸问题,运输能量密度较低 | 试验阶段,少量用于燃料电池 |
技术类型 | 温度/℃ | 发电效率/% | 主要问题 | 研究方向 |
---|---|---|---|---|
PEMFC | 80~100 | 30~40 | 类铂金属的高成本和低利用率 | 组成结构优化、制造工艺改进、新型催化剂研发 |
PAFC | 190~200 | 40~45 | 高温环境下电池电压低,性能衰减较快 | 替代催化剂研发、新型电解质及碳支撑材料替代物研发、新型阴极材料研发 |
MCFC | 600~700 | 50~65 | 熔融碳酸盐对氧化镍阴极及钢板的强腐蚀性 | 镍电极保护技术、电解质组成成分优化、碳捕捉 |
SOFC | 700~1 000 | 50~70 | 对热循环密封性要求较高 | 先进制造技术 |
Tab. 4 Comparison of hydrogen fuel cells
技术类型 | 温度/℃ | 发电效率/% | 主要问题 | 研究方向 |
---|---|---|---|---|
PEMFC | 80~100 | 30~40 | 类铂金属的高成本和低利用率 | 组成结构优化、制造工艺改进、新型催化剂研发 |
PAFC | 190~200 | 40~45 | 高温环境下电池电压低,性能衰减较快 | 替代催化剂研发、新型电解质及碳支撑材料替代物研发、新型阴极材料研发 |
MCFC | 600~700 | 50~65 | 熔融碳酸盐对氧化镍阴极及钢板的强腐蚀性 | 镍电极保护技术、电解质组成成分优化、碳捕捉 |
SOFC | 700~1 000 | 50~70 | 对热循环密封性要求较高 | 先进制造技术 |
源侧 | 网侧 | 荷侧 |
---|---|---|
平抑可再生能源波动的并网型电制氢场景; 集中式可再生能源自发自用制氢+余电上网场景; 可再生能源离网型电制氢场景; 传统火电与可再生能源耦合制氢场景 | 氢储能电站 | 分布式网电制氢场景; 分布式可再生能源自发自用与网电联合制氢场景; 分布式氢能热电联供场景; 分布式电氢制充注一体站场景 |
Tab. 5 Typical application scenarios of hydrogen energy in new power system
源侧 | 网侧 | 荷侧 |
---|---|---|
平抑可再生能源波动的并网型电制氢场景; 集中式可再生能源自发自用制氢+余电上网场景; 可再生能源离网型电制氢场景; 传统火电与可再生能源耦合制氢场景 | 氢储能电站 | 分布式网电制氢场景; 分布式可再生能源自发自用与网电联合制氢场景; 分布式氢能热电联供场景; 分布式电氢制充注一体站场景 |
1 | 李建林,李光辉,郭丽军,等 .“十四五”规划下氢能应用技术现状综述及前景展望[J].电气应用,2021,40(6):10-16. |
LI J L, LI G H, GUO L J,et al .Overview and prospect of hydrogen energy application technology under the “Fourteenth Five Year Plan”[J].Electrotechnical Application,2021,40(6):10-16. | |
2 | 刘玮,万燕鸣,熊亚林,等 .“双碳”目标下我国低碳清洁氢能进展与展望[J].储能科学与技术,2022,11(2):635-642. |
LIU W, WAN Y M, XIONG Y L,et al .Progress and prospect of low-carbon clean hydrogen energy in China under the “dual carbon” goal[J].Energy Storage Science and Technology,2022,11(2):635-642. | |
3 | 朱凯,张艳红 .“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 |
ZHU K, ZHANG Y H .Research on hydrogen energy application in power industry under the “double carbon” situation[J].Power Generation Technology,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 | |
4 | 李争,张蕊,孙鹤旭,等 .可再生能源多能互补制-储-运氢关键技术综述[J].电工技术学报,2021,36(3):446-462. doi:10.19595/j.cnki.1000-6753.tces.200332 |
LI Z, ZHANG R, SUN H X,et al .Overview of key technologies for hydrogen production,storage and transportation with multiple complementary renewable energy sources[J].Transactions of China Electrotechnical Society,2021,36(3):446-462. doi:10.19595/j.cnki.1000-6753.tces.200332 | |
5 | 雷超,李韬 .碳中和背景下氢能利用关键技术及发展现状[J].发电技术,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 |
LEI C, LI T .Key technologies and development status of hydrogen energy utilization in the context of carbon neutralization[J].Power Generation Technology,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 | |
6 | 李慧茹 .变压吸附与炼厂氢气网络的同步设计与柔性分析[D].杭州:浙江大学,2020. |
LI H R .Synchronous design and flexibility analysis of psa and refinery hydrogen networks[D].Hangzhou:Zhejiang University,2020. | |
7 | 仲蕊 .氢能应用场景日趋多元[N].中国能源报,2021-12-13(10). doi:10.1063/5.0031594 |
ZHONG R .The application scenarios of hydrogen energy are increasingly diversified[N].China Energy News,2021-12-13(10). doi:10.1063/5.0031594 | |
8 | 张鹏成,徐箭,孙元章,等 .氢能驱动下钢铁园区能源系统低碳发展模式[J].电力系统自动化,2022,46(13):10-20. doi:10.7500/AEPS20211120001 |
ZHANG P C, XU J, SUN Y Z,et al .Low carbon development mode of energy system in iron and steel parks driven by hydrogen energy[J].Automation of Electric Power Systems,2022,46(13):10-20. doi:10.7500/AEPS20211120001 | |
9 | 张全斌,周琼芳 .基于“碳中和”的氢能应用场景与发展趋势展望[J].中国能源,2021,43(7):81-88. |
ZHANG Q B, ZHOU Q F .Application scenario and development trend of hydrogen energy based on “carbon neutralization”[J].Energy of China,2021,43(7):81-88. | |
10 | 位召祥,张淑兴,刘世学 .固体氧化物电解制氢技术现状及面临问题分析[J].科技创新与应用,2021,11(35):36-39. |
WEI Z X, ZHANG S X, LIU S X .Analysis on the current situation and problems of solid oxide electrolytic hydrogen production technology[J].Technology Innovation and Application,2021,11(35):36-39. | |
11 | BLUM L, HAART B, MALZBENDER J,et al .Recent results in Jülich solid oxide fuel cell technology development[J].Journal of Power Sources,2013,241:477-485. doi:10.1016/j.jpowsour.2013.04.110 |
12 | HAGEN A, FRANDSEN H L .Solid oxide development status at DTU energy[J].ECS Transactions,2019,91(1):135-145. doi:10.1149/09101.0235ecst |
13 | 张文强,于波 .高温固体氧化物电解制氢技术发展现状与展望[J].电化学,2020,26(2):212-229. |
ZHANG W Q, YU B .Development status and prospect of high temperature solid oxide electrolytic hydrogen production technology[J].Journal of Electrochemistry,2020,26(2):212-229. | |
14 | 杨阳,张胜中,王红涛 .碱性电解水制氢关键材料研究进展[J].现代化工,2021,41(5):78-82. |
YANG Y, ZHANG S Z, WANG H T .Research progress of key materials for hydrogen production from alkaline electrolytic water[J].Modern Chemical Industry,2021,41(5):78-82. | |
15 | AZADEH M, SPLIETHOFF H .Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J].Energies,2017,10(8):1099. |
16 | 纪钦洪,徐庆虎,于航,等 .质子交换膜水电解制氢技术现状与展望[J].现代化工,2021,41(4):72-76. |
JI Q H, XU Q H, YU H,et al .Status and prospect of proton exchange membrane water electrolysis hydrogen production technology[J].Modern Chemical Industry,2021,41(4):72-76. | |
17 | 郭小强,魏玉鹏,万燕鸣,等 .新能源制氢电力电子变换器综述[J].电力系统自动化,2021,45(20):185-199. doi:10.7500/AEPS20201101004 |
GUO X Q, WEI Y P, WAN Y M,et al .Review of power electronic converters for hydrogen production from new energy sources[J].Automation of Electric Power Systems,2021,45(20):185-199. doi:10.7500/AEPS20201101004 | |
18 | 魏繁荣,随权,林湘宁,等 .考虑制氢设备效率特性的煤风氢能源网调度优化策略[J].中国电机工程学报,2018,38(5):1428-1439. |
WEI F R, SUI Q, LIN X N,et al .Optimization strategy of coal wind hydrogen energy network scheduling considering the efficiency characteristics of hydrogen production equipment[J].Proceedings of the CSEE,2018,38(5):1428-1439. | |
19 | HONGSIRIKARN K, GOODWIN J G, GREENWAY S,et al .Effect of cations (Na+,Ca2+,Fe3+) on the conductivity of a Nafion membrane[J].Power Sources,2010,195(21):7213-7220. doi:10.1016/j.jpowsour.2010.05.005 |
20 | SHAU A, DE P,RAY P .Improvement on efficiencies of dilute alkaline water electrolyzer using membranes[J].Hydrog Energy,2016,41(48):22652-22662. doi:10.1016/j.ijhydene.2016.11.009 |
21 | HONG Z P, WEI Z X, HAN X J .Optimization scheduling control strategy of wind-hydrogen system considering hydrogen production efficiency[J].Journal of Energy Storage,2022,47:1-15. doi:10.1016/j.est.2021.103609 |
22 | CAI X, LIN R, XU J,et al .Construction and analysis of photovoltaic directly coupled conditions in PEM electrolyzer[J].Internation Journal of Hydrogen Energy,2022,47(10):6494-6507. doi:10.1016/j.ijhydene.2021.12.017 |
23 | RAKOUSKY C, REIMER U, WIPPERMANN K,et al .Polymer electrolyte membrane water electrolysis:Restraining degradation in the presence of fluctuating power[J].Journal of Power Sources,2017,342(2):38-47. doi:10.1016/j.jpowsour.2016.11.118 |
24 | 高新伟,安瑞超 .氢能产业发展情况分析及政策建议[J].中国石化,2022(11):42-45. doi:10.3969/j.issn.1005-457X.2022.11.018 |
GAO X W, AN R C .Analysis on the development of hydrogen energy industry and policy suggestions[J].Sinopec Monthly,2022(11):42-45. doi:10.3969/j.issn.1005-457X.2022.11.018 | |
25 | 曹蕃,陈坤洋,郭婷婷,等 .氢能产业发展技术路径研究[J].分布式能源,2020,5(1):1-8. |
CAO F, CHEN K Y, GUO T T,et al .Research on technological path of hydrogen energy industry development[J].Distributed Energy,2020,5(1):1-8. | |
26 | 王敏 .国内外新能源制氢发展现状及未来趋势[J].化学工业,2018,36(6):13-18. doi:10.3969/j.issn.1673-9647.2018.06.004 |
WANG M .The status quo and trend of producing hydrogen from new energy[J].Chemical Industry,2018,36(6):13-18. doi:10.3969/j.issn.1673-9647.2018.06.004 | |
27 | MISHRA P, KRISHNAN S, RANA S,et al .Outlook of fermentative hydrogen production techniques:an overview of dark,photo and integrated dark-photo fermentative approach to biomass[J].Energy Strategy Reviews,2019,24:27-37. doi:10.1016/j.esr.2019.01.001 |
28 | 王璐,金之钧,苏宇通 .新型固体储氢材料的研究进展[J].石油学报(石油加工),2023,39(1):1-15. |
WANG L, JIN Z J, SU Y T .Research progress of several new types of solid hydrogen storage materials[J].Acta Petrolei Sinica (Petroleum Processing Section),2023,39(1):1-15. | |
29 | 李锦山,任春晓,罗琛,等 .固体储氢材料研发技术进展[J].油气与新能源,2022,34(5):14-20. |
LI J S, REN C X, LUO S,et al .Technological progress on the research and development of solid hydrogen storage materials[J].Petroleum and New Energy,2022,34(5):14-20. | |
30 | 俞红梅,邵志刚,侯明,等 .电解水制氢技术研究进展与发展建议[J].中国工程科学,2021,23(2):146-152. doi:10.15302/j-sscae-2021.02.020 |
YU H M, SHAO Z G, HOU M,et al .Research progress and development suggestions of hydrogen production technology from electrolytic water[J].China Engineering Science, 2021,23(2):146-152. doi:10.15302/j-sscae-2021.02.020 | |
31 | 苗安康,袁越,吴涵,等 .“双碳”目标下绿色氢能技术发展现状与趋势研究[J].分布式能源,2021,6(4):15-24. |
MIAO A K, YUAN Y, WU H,et al .Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J].Distributed Energy,2021,6(4):15-24. | |
32 | 李海波,潘志明,黄耀文 .浅析氢燃料燃气轮机发电的应用前景[J].电力设备管理,2020(8):94-96. |
LI H B, PAN Z M, HUANG Y W .Application prospect of hydrogen fuel gas turbine power generation [J].Power Equipment Management,2020(8):94-96. | |
33 | ZHANG T, WANG P Q, CHEN H C,et al .A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition [J].Applied Energy,2018,223(1):249-262. doi:10.1016/j.apenergy.2018.04.049 |
34 | WILAILAK S, YANG J H, HEO C G,et al .Thermo-economic analysis of phosphoric acid fuel-cell (PAFC) integrated with organic ranking cycle (ORC)[J].Energy,2021,220(1):119744. doi:10.1016/j.energy.2020.119744 |
35 | ITO H .Economic and environmental assessment of phosphoric acid fuel cell-based combined heat and power system for an apartment complex[J].International Journal of Hydrogen Energy,2017,42(23):15449-15463. doi:10.1016/j.ijhydene.2017.05.038 |
36 | SONG R H, KIM C S, SHIN D R .Effects of flow rate and starvation of reactant gases on the performance of phosphoric acid fuel cells[J].Journal of Power Sources,2000,86(1/2):289-293. doi:10.1016/s0378-7753(99)00450-4 |
37 | DHEENADAYALAN S, SONG R H, SHIN D R .Characterization and performance analysis of silicon carbide electrolyte matrix of phosphoric acid fuel cell prepared by ball-milling method[J].Journal of Power Sources,2002,107(1):98-102. doi:10.1016/s0378-7753(01)00991-0 |
38 | NEERGAT M, SHUKLA A K .A high-performance phosphoric acid fuel cell[J].Journal of Power Sources,2001,102(1/2):317-321. doi:10.1016/s0378-7753(01)00766-2 |
39 | SEO S J, JOH H I, KIM H T,et al .Properties of Pt/ C catalyst modified by chemical vapour deposition of Cr as a cathode of phosphoric acid fuel cell[J].Electrochim Acta,2006,52(4):1676-1682. doi:10.1016/j.electacta.2006.03.104 |
40 | 曹殿学,王贵领,吕艳卓 .燃料电池系统[M].北京:北京航空航天大学出版社,2009:204-224. |
CAO D X, WANG G L, LÜ Y Z .Fuel cell system[M].Beijing:Beijing University of Aeronautics and Astronautics Press,2009:204-224. | |
41 | 王涵多,刘江,丁姣 .挤出成型法制备阳极支撑型固体氧化物燃料电池[J].硅酸盐学报,2011,39(7):1140-1144. |
WANG H D, LIU J, DING J .Preparation of anode-supported solid oxide fuel cells by extrusion molding [J].Silicate Journal,2011,39(7):1140-1144. | |
42 | 彭苏萍,韩敏芳,杨翠柏,等 .固体氧化物燃料电池[J].物理,2004,33(2):90-94. doi:10.3321/j.issn:0379-4148.2004.02.003 |
PENG S P, HAN M F, YANG C B,et al .Solid oxide fuel cell[J].Physics,2004,33(2):90-94. doi:10.3321/j.issn:0379-4148.2004.02.003 | |
43 | 迟克彬,张凤华 .固体氧化物燃料电池研究进展[J].天然气化工:C1 化学与化工,2002,27(4):37-44. doi:10.3969/j.issn.1001-9219.2002.04.011 |
CHI K B, ZHANG F H .Research progress of solid oxide fuel cells[J].Natural Gas Chemical Industry:C1 Chemistry and Chemical Industry,2002,27(4):37-44. doi:10.3969/j.issn.1001-9219.2002.04.011 | |
44 | 于兴文,黄学杰,陈立泉 .固体氧化物燃料电池研究进展[J].电池,2002,32(2):110-112. doi:10.3969/j.issn.1001-1579.2002.02.019 |
YU X W, HUANG X J, CHEN L Q .Research progress of solid oxide fuel cells[J].Battery,2002,32(2):110-112. doi:10.3969/j.issn.1001-1579.2002.02.019 | |
45 | 辛显双,朱庆山,刘岩 .固体氧化物燃料电池 (SOFC)合金连接体 耐高温氧化导电防护涂层[J].表面技术,2019,48(1):22-29. |
XIN X S, ZHU Q S, LIU Y .Conductive protective coating with heat oxygen-resistance for solid oxide fuel cell (SOFC) alloy interconnect[J].Surface Technology,2019,48(1):22-29. | |
46 | 张勋奎 .以新能源为主体的新型电力系统发展路线图[J].分布式能源,2021,6(6):1-8. |
ZHANG X K .New power system development roadmap with new energy as the main body[J].Distributed Energy,2021,6(6):1-8. | |
47 | 严思韵,王晨,周登极 .含氢能气网掺混输运的综合能源系统优化研究[J].电力工程技术,2021,40(1):10-16. doi:10.12158/j.2096-3203.2021.01.002 |
YAN S Y, WANG C, ZHOU D J .Optimization of integrated electricity and gas system considering hydrogen-natural-gas mixture transportation[J].Electric Power Engineering Technology,2021,40(1):10-16. doi:10.12158/j.2096-3203.2021.01.002 | |
48 | 李荦一,韩莹,李奇,等 .计及效率特性的电-氢混合储能直流微网经济下垂控制策略[J].电力系统保护与控制,2022,50(7):69-80. |
LI L Y, HAN Y, LI Q,et al .Economic droop control strategy of a hybrid electric-hydrogen DC microgrid considering efficiency characteristics[J].Power System Protection and Control,2022,50(7):69-80. | |
49 | 吴景霞,索金琳 .基于改进DEC算法的风光氢系统容量配置[J].电网与清洁能源,2022,38(11):98-106. doi:10.3969/j.issn.1674-3814.2022.11.012 |
WU J X, SUO J L .Capacity configuration of wind-solar combined power generation system coupled with hydrogen energy storage based on improved DEC algorithm[J].Power System and Clean Energy,2022,38(11):98-106. doi:10.3969/j.issn.1674-3814.2022.11.012 | |
50 | 杨馥源,田雪沁,徐彤,等 .面向碳中和电力系统转型的电氢枢纽灵活性应用[J].电力建设,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 |
YANG F Y, TIAN X Q, XU T,et al .Flexibility of electro-hydrogen hub for power system transformation under the goal of carbon neutrality[J].Electric Power Construction,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 | |
51 | 刘海涛,朱海南,李丰硕,等 .计及碳成本的电-气-热-氢综合能源系统经济运行策略[J].电力建设,2021,42(12):21-29. doi:10.12204/j.issn.1000-7229.2021.12.003 |
LIU H T, ZHU H N, LI F S,et al .Economic operation strategy of electric-gas-heat-hydrogen integrated energy system considering carbon cost[J].Electric Power Construction,2021,42(12):21-29. doi:10.12204/j.issn.1000-7229.2021.12.003 | |
52 | MEHRENJANI J R, GHAREHGHANI A, NASRABADI A M,et al .Design,modeling and optimization of a renewable-based system for power generation and hydrogen production[J].International Journal of Hydrogen Energy,2022,47(31):14225-14242. doi:10.1016/j.ijhydene.2022.02.148 |
53 | NASSER M, MEGAHED T F, OOKAWARA S,et al .Techno-economic assessment of clean hydrogen production and storage using hybrid renewable energy system of PV/wind under different climatic conditions[J].Sustainable Energy Technologies and Assessments, 2022,52:1-14. doi:10.1016/j.seta.2022.102195 |
54 | 陈宇,赵彦旻,曹吉领,等 .氢电耦合在高弹性电网中的应用场景及投资收益分析[J].能源工程,2022,42(3):88-92. doi:10.3969/j.issn.1004-3950.2022.3.nygc202203015 |
CHEN Y, ZHAO Y M, CAO J L,et al .Application scenarios and return on investment analysis of hydrogen-electric coupling in highly elastic power grids[J].Energy Engineering,2022,42(3):88-92. doi:10.3969/j.issn.1004-3950.2022.3.nygc202203015 | |
55 | 郭建华 .含电—氢混合储能的电力系统优化运行[D].大连:大连理工大学,2022. |
GUO J H .Optimal operation of power system with hybrid energy storage containing electricity and hydrogen[D].Dalian:Dalian University of Technology,2022. | |
56 | 王振华,王丽,邹业成,等 .氢能的应用现状及展望[J].中国氯碱,2021(11):40-47. doi:10.3969/j.issn.1009-1785.2021.11.012 |
WANG Z H, WANG L, ZOU Y C,et al .Present situation and prospect of hydrogen energy application[J].China Chlor-Alkali,2021(11):40-47. doi:10.3969/j.issn.1009-1785.2021.11.012 | |
57 | 曾升,李进,王鑫,等 .中国氢能利用技术进展及前景展望[J].电源技术,2022,46(7):716-722. doi:10.3969/j.issn.1002-087X.2022.07.005 |
ZENG S, LI J, WANG X,et al .Progress and prospect of hydrogen energy utilization technology in China[J].Chinese Journal of Power Sources,2022,46(7):716-722. doi:10.3969/j.issn.1002-087X.2022.07.005 | |
58 | 魏莉莉 .炼油厂氢气系统稳定性的研究[D].杭州:浙江大学,2018. |
WEI L L .Study on the stability of hydrogen system in refinery[D].Hangzhou:Zhejiang University,2018. | |
59 | 朱美倩 .炼厂气组合分离工艺设计与氢气系统优化[D].北京:中国石油大学,2019. |
ZHU M Q .Design of refinery gas combined separation process and optimization of hydrogen system[D].Beijing:China University of Petroleum,2019. | |
60 | 袁铁江,计力,田雪沁,等 .考虑燃料电池汽车加氢负荷的电-氢系统协同优化运行[J].电力系统自动化,2023,47(5):16-25. |
YUAN T J, JI L, TIAN X Q,et al .Cooperative optimal operation of electricity hydrogen system considering hydrogen refueling load of fuel cell vehicles[J].Automation of Electric Power Systems,2023,47(5):16-25. | |
61 | 马志超,冯浩,闫云东 .加氢站供氢模式的选择及制氢技术的研究现状分析[J].广州化工,2019,47(16):132-134. |
MA Z C, FENG H, YAN Y D .Selection of hydrogen supply mode for hydrogen refueling station and analysis of research status of hydrogen production technology[J].Guangzhou Chemical Industry,2019,47(16):132-134. | |
62 | 李佳琪,徐潇源,严正 .大规模新能源汽车接入背景下的电氢能源与交通系统耦合研究综述[J].上海交通大学学报,2022,56(3):253-266. |
LI J Q, XU X Y, YAN Z .Overview of research on coupling of electric hydrogen energy and transportation system under the background of large-scale new energy vehicle access[J].Journal of Shanghai Jiaotong University,2022,56(3):253-266. | |
63 | 刘玮,万燕鸣,熊亚林,等 .“双碳”目标下我国低碳清洁氢能进展与展望[J].储能科学与技术,2022,11(2):635-642. |
LIU W, WAN Y M, XIONG Y L,et al .Outlook of low-carbon and clean hydrogen in China under the goal of “carbon peak and neutrality”[J].Energy Storage Science and Technology,2022,11(2):635-642. | |
64 | 蒋东方,贾跃龙,鲁强,等 .氢能在综合能源系统中的应用前景[J].中国电力,2020,53(5):135-142. |
JIANG D F, JIA Y L, LU Q,et al .Application prospect of hydrogen energy in integrated energy systems[J].Electric Power,2020,53(5):135-142. | |
65 | FARSI A, ROSEN M A .Performance analysis of a hybrid aircraft propulsion system using solid oxide fuel cell,lithium ion battery and gas turbine[J].Applied Energy,2023,329:120280. doi:10.1016/j.apenergy.2022.120280 |
66 | 曲小 .欧洲加速氢能飞机研发与布局[J].大飞机,2022(5):38-41. doi:10.3969/j.issn.2095-3399.2022.05.011 |
QU X .Europe accelerates the development and layout of hydrogen powered aircraft[J].Large Aircraft,2022(5):38-41. doi:10.3969/j.issn.2095-3399.2022.05.011 | |
67 | 张玮斌,余雪薇,把昕桐 .氢能建筑推进中若干问题的思考[J].建筑设计管理,2021,38(9):8-15. doi:10.3969/j.issn.1673-1093.2021.09.001 |
ZHANG W B, YU X W, BA X T .Consideration of some problems in the promotion of hydrogen energy buildings[J].Architectural Design Management,2021,38(9):8-15. doi:10.3969/j.issn.1673-1093.2021.09.001 | |
68 | 吴德敏 .氢能助力建筑碳减排途径与前景初探[J].建设科技,2022(19):27-31. |
WU D M .Preliminary study on the approaches and prospects of hydrogen energy assisting building carbon emission reduction[J].Construction Technology,2022(19):27-31. | |
69 | DENG S, WANG R Z, DAI Y J .How to evaluate performance of net zero energy building:a literature research[J].Energy,2014(71):1-16. doi:10.1016/j.energy.2014.05.007 |
70 | LU Y H, WANG S W, SHAN K .Design optimization and optimal control of grid-connected and standalone nearly/net zero energy buildings[J].Applied Energy,2015(155):463-477. doi:10.1016/j.apenergy.2015.06.007 |
71 | 袁铁江,高玲玉,谢永胜,等 .基于氢能的风-火耦合多能系统设计与综合评估[J].电力自动化设备,2021,41(10):227-233. |
YUAN T J, GAO L Y, XIE Y S,et al .Design and comprehensive evaluation of wind fire coupling multi energy system based on hydrogen energy[J].Electric Power Automation Equipment,2021,41(10):227-233. |
[1] | Lingguo KONG, Jian GONG, Shihui YANG, Defu NI, Shibo WANG, Chuang LIU. Development Status and Trend of DC/DC Isolated Hydrogen Production Power Supply [J]. Power Generation Technology, 2023, 44(4): 443-451. |
[2] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[3] | Yikun HU, Junwen CAO, Wenqiang ZHANG, Bo YU, Jianchen WANG, Jing CHEN. Application Research Progress of High Temperature Solid Oxide Electrolysis Cell [J]. Power Generation Technology, 2023, 44(3): 361-372. |
[4] | Lianpeng ZHAO, Zhenyang ZHANG, Gang AN, Shenyin YANG. Progress in Hydrogen Liquefaction Technology With Mixed Refrigerant [J]. Power Generation Technology, 2023, 44(3): 331-339. |
[5] | Chunyan ZHANG, Zhenlan DOU, Jun WANG, Liangliang ZHU, Xiaotong SUN, Gendi LI. Development Route of Hydrogen Production by Water Electrolysis, Hydrogen Storage and Hydrogen Supply in Power System [J]. Power Generation Technology, 2023, 44(3): 305-317. |
[6] | Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry [J]. Power Generation Technology, 2023, 44(3): 296-304. |
[7] | Jianlin LI, Chenxi SHAO, Zedong ZHANG, Zhonghao LIANG, Fei ZENG. Analysis of Hydrogen Industry Policy and Commercialization Model [J]. Power Generation Technology, 2023, 44(3): 287-295. |
[8] | Xuelin LI, Ling YUAN. Development Status and Suggestions of Hydrogen Production Technology by Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 198-206. |
[9] | Chao LEI, Tao LI. Key Technologies and Development Status of Hydrogen Energy Utilization Under the Background of Carbon Neutrality [J]. Power Generation Technology, 2021, 42(2): 207-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||