Power Generation Technology ›› 2025, Vol. 46 ›› Issue (6): 1192-1199.DOI: 10.12096/j.2096-4528.pgt.24055
• Energy Storage • Previous Articles
Lingxu LI1,2, Longxiang CHEN1,2,3, Kai YE2
Received:2024-09-02
Revised:2024-11-18
Published:2025-12-31
Online:2025-12-25
Contact:
Longxiang CHEN
Supported by:CLC Number:
Lingxu LI, Longxiang CHEN, Kai YE. Study on Heat Storage Performance of Various Mixture Combinations of Stones, Sand, and Thermal Oil[J]. Power Generation Technology, 2025, 46(6): 1192-1199.
| 参数 | 数值 |
|---|---|
| 长( | 1 |
| 截面积( | 0.12×0.12 |
| 管道直径/m | 0.016 |
| 管道厚度/m | 0.002 |
| 管道材料密度/(kg⋅m-3) | 8 030 |
| 管道材料比热容/(J⋅kg-1⋅K-1) | 502.48 |
| 管道材料导热系数/(W⋅kg-1⋅K-1) | 16.27 |
| 传热流体密度/(kg⋅m-3) | 868.50 |
| 传热流体比热容/(J⋅kg-1⋅K-1) | 2 540 |
| 传热流体导热系数/(W⋅kg-1⋅K-1) | 0.15 |
Tab. 1 Packed bed model and material parameters
| 参数 | 数值 |
|---|---|
| 长( | 1 |
| 截面积( | 0.12×0.12 |
| 管道直径/m | 0.016 |
| 管道厚度/m | 0.002 |
| 管道材料密度/(kg⋅m-3) | 8 030 |
| 管道材料比热容/(J⋅kg-1⋅K-1) | 502.48 |
| 管道材料导热系数/(W⋅kg-1⋅K-1) | 16.27 |
| 传热流体密度/(kg⋅m-3) | 868.50 |
| 传热流体比热容/(J⋅kg-1⋅K-1) | 2 540 |
| 传热流体导热系数/(W⋅kg-1⋅K-1) | 0.15 |
| 材料 | 密度ρ/(kg⋅m-3) | 比热容Cp /(J⋅kg-1⋅K-1) | 导热系数λ/(W⋅kg-1⋅K-1) |
|---|---|---|---|
| 混凝土 | 2 300 | 2 200 | 1.67 |
| 沙子 | 1 000 | 900 | 1.33 |
| 石块 | 2 359 | 1 100 | 3.50 |
| 开裂混凝土 | 1 955 | 900 | 1.34 |
Tab. 2 Heat storage material parameters
| 材料 | 密度ρ/(kg⋅m-3) | 比热容Cp /(J⋅kg-1⋅K-1) | 导热系数λ/(W⋅kg-1⋅K-1) |
|---|---|---|---|
| 混凝土 | 2 300 | 2 200 | 1.67 |
| 沙子 | 1 000 | 900 | 1.33 |
| 石块 | 2 359 | 1 100 | 3.50 |
| 开裂混凝土 | 1 955 | 900 | 1.34 |
| 储热介质 | 储热量/kJ | 储热功率/kW |
|---|---|---|
| 未开裂混凝土 | 3 117.59 | 1.25 |
| 开裂混凝土 | 2 397.99 | 0.96 |
Tab. 3 Comparison of heat storage performance between cracked concrete and uncracked concrete
| 储热介质 | 储热量/kJ | 储热功率/kW |
|---|---|---|
| 未开裂混凝土 | 3 117.59 | 1.25 |
| 开裂混凝土 | 2 397.99 | 0.96 |
| [1] | 张丽娟,保富 .含分布式新能源的多虚拟电厂协同运行[J].电测与仪表,2025,62(9):134-141. |
| ZHANG L J, BAO F .Coordinated operation of multiple virtual power plants integrated with distributed renewable energy[J].Electrical Measurement & Instrumentation,2025,62(9):134-141. | |
| [2] | 王放放,杨鹏威,赵光金,等 .新型电力系统下火电机组灵活性运行技术发展及挑战[J].发电技术,2024,45(2):189-198. |
| WANG F F, YANG P W, ZHAO G J,et al .Development and challenge of flexible operation technology of thermal power units under new power system[J].Power Generation Technology,2024,45(2):189-198. | |
| [3] | LIU M, WANG S, YAN J J .Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm[J].Energy,2021,214:119022. doi:10.1016/j.energy.2020.119022 |
| [4] | 张建平,胡慧瑶,吴淑英,等 .正交各向异性相变材料的无网格法传热模型及应用[J].太阳能学报,2022,43(3):242-250. |
| ZHANG J P, HU H Y, WU S Y,et al .Meshless heat transfer analysis model of orthotropic phase change materials and its application[J].Acta Energiae Solaris Sinica,2022,43(3):242-250. | |
| [5] | 钱怡洁 .单罐斜温层蓄热性能实验研究[D].北京:华北电力大学,2017. |
| QIAN Y J .Experimental study on the thermal energy storage performance of a single-tank slanted layer[D].Beijing:North China Electric Power University,2017. | |
| [6] | ELSIHY E S, LIAO Z R, XU C,et al .Dynamic characteristics of solid packed-bed thermocline tank using molten-salt as a heat transfer fluid[J].International Journal of Heat and Mass Transfer,2021,165:120677. doi:10.1016/j.ijheatmasstransfer.2020.120677 |
| [7] | 韩伟,叶楷,陈龙祥 .基于多孔网结构的斜温层储热罐性能改进数值模拟[J].厦门大学学报(自然科学版),2024,63(1):102-110. |
| HAN W, YE K, CHEN L X .Numerical simulation on performance improvement of thermocline energy storage tank based on porous mesh structure[J].Journal of Xiamen University (Natural Science),2024,63(1):102-110. | |
| [8] | SOPRANI S, MARONGIU F, CHRISTENSEN L,et al .Design and testing of a horizontal rock bed for high temperature thermal energy storage[J].Applied Energy,2019,251:113345. doi:10.1016/j.apenergy.2019.113345 |
| [9] | RAO C R C, NIYAS H, MUTHUKUMAR P .Performance tests on lab-scale sensible heat storage prototypes[J].Applied Thermal Engineering,2018,129:953-967. doi:10.1016/j.applthermaleng.2017.10.085 |
| [10] | LAING D, BAHL C, BAUER T,et al .High-temperature solid-media thermal energy storage for solar thermal power plants[J].Proceedings of the IEEE,2012,100(2):516-524. doi:10.1109/jproc.2011.2154290 |
| [11] | JOHN E E, HALE W M, SELVAM R P .Development of a high-performance concrete to store thermal energy for concentrating solar power plants[C]//ASME 2011 5th International Conference on Energy Sustainability,Parts A,B,and C.Washington,DC,USA:ASMEDC,2011:523-529. doi:10.1115/es2011-54177 |
| [12] | BOQUERA L, CASTRO J R, PISELLO A L,et al .Thermal and mechanical performance of cement paste under high temperature thermal cycles[J].Solar Energy Materials and Solar Cells,2021,231:111333. doi:10.1016/j.solmat.2021.111333 |
| [13] | SKINNER J E, STRASSER M N, BROWN B M,et al .Testing of high-performance concrete as a thermal energy storage medium at high temperatures[J].Journal of Solar Energy Engineering,2014,136(2):021004. doi:10.1115/1.4024925 |
| [14] | 俞海勇,王琼,张贺,等 .基于全寿命周期的预拌混凝土碳排放计算模型研究[J].粉煤灰,2011,23(6):42-46. |
| YU H Y, WANG Q, ZHANG H,et al .Servicelife period-based carbon emission computing model for ready-mix concrete[J].Coal Ash,2011,23(6):42-46. | |
| [15] | DIAGO M, INIESTA A C, SOUM-GLAUDE A,et al .Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology[J].Applied Energy,2018,216:402-413. doi:10.1016/j.apenergy.2018.02.106 |
| [16] | KIWAN S, SOUD Q R .Numerical investigation of sand-basalt heat storage system for beam-down solar concentrators[J].Case Studies in Thermal Engineering,2019,13:100372. doi:10.1016/j.csite.2018.100372 |
| [17] | 朱进容,董琼,程晓敏,等 .高温混凝土储热模块充放热特性数值研究[J].武汉理工大学学报,2013,35(12):1-5. |
| ZHU J R, DONG Q, CHENG X M,et al .Numerical simulation on charge and discharge performance of high temperature concrete thermal storage module[J].Journal of Wuhan University of Technology,2013,35(12):1-5. | |
| [18] | 段后红 .混凝土全寿命周期碳排放分析及减排措施[J].建设科技,2024(1):38-40. |
| DUAN H H .Analysis of carbon emissions throughout whole life cycle of concrete and emission reduction measures[J].Construction Science and Technology,2024(1):38-40. | |
| [19] | XUE H B, WHITE A .A comparative study of liquid,solid and hybrid adiabatic compressed air energy storage systems[J].Journal of Energy Storage,2018,18:349-359. doi:10.1016/j.est.2018.05.016 |
| [20] | XIE N N, WANG L, WANG Y F,et al .Spray-type packed bed concept for thermal energy storage:liquid holdup and energy storage characteristics[J].Applied Thermal Engineering,2019,160:114082. doi:10.1016/j.applthermaleng.2019.114082 |
| [1] | Bin LUO, Xiaolong BAI, Tianlei ZANG, Yan HUANG, Lin ZHANG, Meng LI, Xuexia ZHANG, Yonglong JIANG. Review of Research on Wind-Solar-Hydro Complementary Power Generation Systems [J]. Power Generation Technology, 2025, 46(6): 1097-1111. |
| [2] | Feng CHEN, Xiaomin LU, Bing SHEN, Junpeng WANG. Bi-Level Planning Model for Distributed Energy Storage Based on Accommodation-Supply Security Game [J]. Power Generation Technology, 2025, 46(6): 1133-1143. |
| [3] | Ping ZHANG, Yongqiang LI, Hualiang XING. Optimization Configuration of Hybrid Energy Storage Capacity for Wind Power Fluctuation Smoothing Based on Variational Mode Decomposition [J]. Power Generation Technology, 2025, 46(6): 1144-1153. |
| [4] | Xiaowei ZHANG, Zhenxiao YI, Kai WANG. State of Health Estimation of On-Board Lithium-Ion Batteries Using Temporal Convolutional Network Optimized by Improved Self-Adaptive Honey Badger Algorithm [J]. Power Generation Technology, 2025, 46(6): 1154-1163. |
| [5] | Jingshu ZHANG, Qian LIU, Xiaole YAO, Chao XU, Xing JU. Hydrated Salt Composite Phase Change Materials for Passive Thermal Management and Safety Protection of Lithium-Ion Batteries [J]. Power Generation Technology, 2025, 46(6): 1164-1175. |
| [6] | Mengdong CHEN, Wei KANG, Zhanfeng DENG, Wenqiang ZHAO, Guobin LEI. Research on Heat Storage and Release Characteristics of Solid Heat Storage Materials in Low-Pressure Environments [J]. Power Generation Technology, 2025, 46(6): 1184-1191. |
| [7] | Jianlin LI, Yuchen PENG, Qian WANG, Xiaoxia JIANG, Lei WANG. Research Status and Prospect of Lithium-Ion Battery Modelling [J]. Power Generation Technology, 2025, 46(5): 857-871. |
| [8] | Bo ZOU, Jiandi REN, Daoming XU, Lisheng DENG, Lida LIAO, Junbing XIAO. Recent Developments on the Application of Chloride Molten Salt Heat Storage Technology to New Energy Power Generation [J]. Power Generation Technology, 2025, 46(5): 872-884. |
| [9] | Ning MA, Pan ZHAO, Aijie LIU, Wenpan XU, Jiangfeng WANG. Comparison of Characteristics and Exergoeconomic Between Hydrogen and Natural Gas-Fueled Compressed Air Energy Storage Systems [J]. Power Generation Technology, 2025, 46(5): 885-896. |
| [10] | Fugui DONG, Wei ZHANG. Research on Optimization of Operation Strategy for Independent New Energy Storage Power Stations Considering Capacity Value [J]. Power Generation Technology, 2025, 46(5): 897-908. |
| [11] | Haoran MA, Zhi YUAN, Weiqing WANG, Ji LI. Research on Economic Scheduling of Active Distribution Networks With Inclusion of Data Center and Energy Storage [J]. Power Generation Technology, 2025, 46(4): 748-757. |
| [12] | Jie WANG, Lijun XU, Xiaozhu LI, Xiaochao FAN, GULIZHATI∙Hailati, Weiqing WANG. Coordinated Optimization of Intelligent Soft Open Points and Multiple Types of Shared Energy Storage in Distribution Networks Considering Flexibility Deficiency Risk [J]. Power Generation Technology, 2025, 46(4): 758-767. |
| [13] | Guangyu WEI, Xiaodong YING, Yanjun YAO, Xiaofang YANG, Chudi WENG, Yonggang PENG, Hailong LI. Power Coordinated Control Strategy for Grid-Connected DC Microgrid Considering State of Charge [J]. Power Generation Technology, 2025, 46(4): 788-796. |
| [14] | Jiajia LIU, Xing JU. Techno-Economic Analysis of Photovoltaic-Concentrating Solar Power Hybrid System for Thermal Energy Storage of Electricity Curtailment [J]. Power Generation Technology, 2025, 46(4): 807-817. |
| [15] | Sucheng LIU, Li LUAN, Long LI, Tao HONG, Xiaodong LIU. Research on Large-Signal Stability Assessment Methods of DC Microgrids Based on Artificial Intelligence [J]. Power Generation Technology, 2025, 46(3): 496-507. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||