Power Generation Technology ›› 2025, Vol. 46 ›› Issue (6): 1184-1191.DOI: 10.12096/j.2096-4528.pgt.24071
• Energy Storage • Previous Articles
Mengdong CHEN1, Wei KANG1, Zhanfeng DENG1, Wenqiang ZHAO2, Guobin LEI2
Received:2024-07-15
Revised:2024-10-13
Published:2025-12-31
Online:2025-12-25
Contact:
Zhanfeng DENG
Supported by:CLC Number:
Mengdong CHEN, Wei KANG, Zhanfeng DENG, Wenqiang ZHAO, Guobin LEI. Research on Heat Storage and Release Characteristics of Solid Heat Storage Materials in Low-Pressure Environments[J]. Power Generation Technology, 2025, 46(6): 1184-1191.
| 序号 | 测量仪表 | 量程与精度 |
|---|---|---|
| 1 | K型热电偶 | 测量温度范围:0~600 ℃ 精度:±1 ℃ |
| 2 | 空气流量计 | 流量范围:0~100 m³/h 精度:1.5级 |
| 3 | 真空计 | 绝对压力范围:0~1 bar 精度:1.5级 |
| 4 | PT100热电阻 | 水温度范围:0~100 ℃ 精度:±0.5 ℃ |
| 5 | 水流量计 | 流量范围:0⁓1 m3/h 精度:±1.5% |
Tab. 1 Test instruments and their precision
| 序号 | 测量仪表 | 量程与精度 |
|---|---|---|
| 1 | K型热电偶 | 测量温度范围:0~600 ℃ 精度:±1 ℃ |
| 2 | 空气流量计 | 流量范围:0~100 m³/h 精度:1.5级 |
| 3 | 真空计 | 绝对压力范围:0~1 bar 精度:1.5级 |
| 4 | PT100热电阻 | 水温度范围:0~100 ℃ 精度:±0.5 ℃ |
| 5 | 水流量计 | 流量范围:0⁓1 m3/h 精度:±1.5% |
| 工况 | 压力/kPa | 加热丝分阶段加热温度/℃ | 实验起始温度/℃ |
|---|---|---|---|
| 1 | 101 | 90~170~250 | 45 |
| 2 | 80 | 90~170~250 | 48 |
| 3 | 40 | 90~170~250 | 49 |
| 4 | 40 | 550 | 45 |
Tab. 2 Operating conditions for heat storage tests
| 工况 | 压力/kPa | 加热丝分阶段加热温度/℃ | 实验起始温度/℃ |
|---|---|---|---|
| 1 | 101 | 90~170~250 | 45 |
| 2 | 80 | 90~170~250 | 48 |
| 3 | 40 | 90~170~250 | 49 |
| 4 | 40 | 550 | 45 |
| 工况 | 压力/kPa | 实验起始温度/℃ | 释热空气入口温度/℃ |
|---|---|---|---|
| 5 | 101 | 230 | 30 |
| 6 | 80 | 224 | 30 |
| 7 | 40 | 225 | 30 |
| 8 | 40 | 347 | 30 |
| 9 | 40 | 432 | 30 |
Tab. 3 Operating conditions for heat release tests
| 工况 | 压力/kPa | 实验起始温度/℃ | 释热空气入口温度/℃ |
|---|---|---|---|
| 5 | 101 | 230 | 30 |
| 6 | 80 | 224 | 30 |
| 7 | 40 | 225 | 30 |
| 8 | 40 | 347 | 30 |
| 9 | 40 | 432 | 30 |
| [1] | 李建林,张则栋,谭宇良,等 .碳中和目标下储能发展前景综述[J].电气时代,2022(1):61-65. |
| LI J L, ZHANG Z D, TAN Y L,et al .Review of the development prospect of energy storage under the goal of carbon neutrality[J].Electric Age,2022(1):61-65. | |
| [2] | 张力菠,吴一锴,王群伟 .考虑碳中和目标与成本优化的可再生能源大规模发展规划[J].广东电力,2023,36(7):31-39. |
| ZHANG L B, WU Y K, WANG Q W .Large-scale development of renewable energy in consideration of carbon neutrality and cost optimization[J].Guangdong Electric Power,2023,36(7):31-39. | |
| [3] | 杨洁,吴志强,范宏 .基于实时电价的含储能可再生能源系统协同调度策略[J].智慧电力,2023,51(4):46-53. doi:10.3969/j.issn.1673-7598.2023.04.007 |
| YANG J, WU Z Q, FAN H .Collaborative scheduling strategy for renewable energy systemswith energy storage based on real time price[J].Smart Power,2023,51(4):46-53. doi:10.3969/j.issn.1673-7598.2023.04.007 | |
| [4] | 张雷,刘琦,赵晓丽,等 .电力需求增长和负荷灵活性提升视角下的风光资源密集地区可再生能源消纳研究[J].全球能源互联网,2024,7(4):454-462. |
| ZHANG L, LIU Q, ZHAO X L,et al .Research on renewable energy penetration in wind and solar resource-intensive areas from the perspective of power demand growth and load flexibility enhancement[J].Journal of Global Energy Interconnection,2024,7(4):454-462. | |
| [5] | 李文升,刘晓明,曹永吉,等 .考虑电力系统灵活性的网-储联合规划[J].智慧电力,2023,51(4):30-37. |
| LI W S, LIU X M, CAO Y J,et al .Joint planning of energy storage and transmission line considering power system flexibility[J].Smart Power,2023,51(4):30-37. | |
| [6] | 姜竹,邹博杨,丛琳,等 .储热技术研究进展与展望[J].储能科学与技术,2022,11(9):2746-2771. doi:10.19799/j.cnki.2095-4239.2021.0538 |
| JIANG Z, ZOU B Y, CONG L,et al .Recent progress and outlook of thermal energy storage technologies[J].Energy Storage Science and Technology,2022,11(9):2746-2771. doi:10.19799/j.cnki.2095-4239.2021.0538 | |
| [7] | KHARE S, DELL'AMICO M, KNIGHT C,et al .Selection of materials for high temperature sensible energy storage[J].Solar Energy Materials and Solar Cells,2013,115:114-122. doi:10.1016/j.solmat.2013.03.009 |
| [8] | 吴考阳 .固体蓄热新型换热方式研究[D].张家口:河北建筑工程学院,2021. |
| WU K Y .Research on new heat transfer mode of solid heat storage[D].Zhangjiakou:Hebei University of Architecture,2021. | |
| [9] | MAWIRE A, MCPHERSON M, VAN DEN HEETKAMP R R J,et al .Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems[J].Applied Energy,2009,86(7/8):1246-1252. doi:10.1016/j.apenergy.2008.09.009 |
| [10] | MAWIRE A, MCPHERSON M .Experimental characterisation of a thermal energy storage system using temperature and power controlled charging[J].Renewable Energy,2008,33(4):682-693. doi:10.1016/j.renene.2007.04.021 |
| [11] | 郑志伟,仇性启,祁风雷,等 .蜂窝陶瓷蓄热体传热和阻力特性实验研究[J].石油化工设备,2013,42(1):9-13. |
| ZHENG Z W, QIU X Q, QI F L,et al .Experimental study of heat transfer and resistance characteristics on honeycomb ceramic regenerator[J].Petro-Chemical Equipment,2013,42(1):9-13. | |
| [12] | XU G Z, HU X, LIAO Z R,et al .Experimental and numerical study of an electrical thermal storage device for space heating[J].Energies,2018,11(9):2180. doi:10.3390/en11092180 |
| [13] | 陈梦东,章康,马美秀,等 .基于Workbench的固体电蓄热装置换热通道参数优化[J].热能动力工程,2023,38(10):64-71. |
| CHEN M D, ZHANG K, MA M X,et al .Optimization of heat exchange channel parameters of solid electric heat storage device based on workbench[J].Journal of Engineering for Thermal Energy and Power,2023,38(10):64-71. | |
| [14] | 毕月虹,吴娟,鲁一涵 .固体蓄热砖孔道结构参数对蓄/释热性能的影响[J].北京工业大学学报,2022,48(5):543-551. |
| BI Y H, WU J, LU Y H .Influence of pore structure parameters of solid thermal storage bricks on the heat storage/release performance[J].Journal of Beijing University of Technology,2022,48(5):543-551. | |
| [15] | 赵頔,王启民 .基于ANSYS分析的蓄热砖蓄热特性数值模拟及实验研究[J].沈阳工程学院学报(自然科学版),2020,16(2):34-38. |
| ZHAO D, WANG Q M .Numerical simulation and experimental study on thermal storage characteristics of thermal storage brick based on ANSYS analysis[J].Journal of Shenyang Institute of Engineering (Natural Science),2020,16(2):34-38. | |
| [16] | 陈贶,刘鹏,刘大玮 .谷电固体蓄热供暖方案的应用与分析[J].有色冶金节能,2020,36(1):41-44. |
| CHEN K, LIU P, LIU D W .Application and analysis of the heating scheme of valley electricity solid heat storage[J].Energy Saving of Nonferrous Metallurgy,2020,36(1):41-44. | |
| [17] | 李传,葛志伟,金翼,等 .基于复合相变材料储热单元的储热特性[J].储能科学与技术,2015,4(2):169-175. |
| LI C, GE Z W, JIN Y,et al .Heat transfer behaviour of thermal energy storage components using composite phase change materials[J].Energy Storage Science and Technology,2015,4(2):169-175. | |
| [18] | 胡思科,周林林,邢姣娇 .圆形和椭圆形孔道固体蓄热装置蓄放热特性模拟[J].热力发电,2018,47(1):38-45. |
| HU S K, ZHOU L L, XING J J .Simulation on heat discharge and heat storage performance of solid heat storage device with round and oval pore canals[J].Thermal Power Generation,2018,47(1):38-45. | |
| [19] | 赵思聪,刘云亮,朱瑞,等 .固态储热装置温度场试验研究[J].热能动力工程,2022,37(S1):66-76. |
| ZHAO S C, LIU Y L, ZHU R,et al .Experimental study on temperature field of solid-state heat storage device[J].Journal of Engineering for Thermal Energy and Power,2022,37(S1):66-76. | |
| [20] | 孙德明,马昕霞,朱泊旭,等 .多种固体蓄热装置放热特性的数值模拟研究[J].上海电力大学学报,2022,38(3):227-233. |
| SUN D M, MA X X, ZHU B X,et al .Numerical simulation study on heat dissipation characteristics of multiple solid regenerative devices[J].Journal of Shanghai University of Electric Power,2022,38(3):227-233. | |
| [21] | 邢作霞,赵海川,马士平,等 .电制热固体储热装置关键参数设计研究和经济性评估[J].储能科学与技术,2019,8(6):1211-1216. |
| XING Z X, ZHAO H C, MA S P,et al .Study on key parameters design and economic evaluation of the electric heating and solid sensible heat thermal storage device[J].Energy Storage Science and Technology,2019,8(6):1211-1216. |
| [1] | Zhikang WANG, Ruqi ZHANG, Shaoke YUAN, Dongjiang HAN, Jun SUI. Research Progress on Organic Rankine Cycle-Vapor Compression Cycle Systems [J]. Power Generation Technology, 2025, 46(6): 1059-1073. |
| [2] | Bin LUO, Xiaolong BAI, Tianlei ZANG, Yan HUANG, Lin ZHANG, Meng LI, Xuexia ZHANG, Yonglong JIANG. Review of Research on Wind-Solar-Hydro Complementary Power Generation Systems [J]. Power Generation Technology, 2025, 46(6): 1097-1111. |
| [3] | Xi WANG, Xinyi CHEN. Power Prediction Method for Offshore Wind Farms Based on Temporal Convolutional Network-Transformer [J]. Power Generation Technology, 2025, 46(6): 1123-1132. |
| [4] | Feng CHEN, Xiaomin LU, Bing SHEN, Junpeng WANG. Bi-Level Planning Model for Distributed Energy Storage Based on Accommodation-Supply Security Game [J]. Power Generation Technology, 2025, 46(6): 1133-1143. |
| [5] | Ping ZHANG, Yongqiang LI, Hualiang XING. Optimization Configuration of Hybrid Energy Storage Capacity for Wind Power Fluctuation Smoothing Based on Variational Mode Decomposition [J]. Power Generation Technology, 2025, 46(6): 1144-1153. |
| [6] | Xiaowei ZHANG, Zhenxiao YI, Kai WANG. State of Health Estimation of On-Board Lithium-Ion Batteries Using Temporal Convolutional Network Optimized by Improved Self-Adaptive Honey Badger Algorithm [J]. Power Generation Technology, 2025, 46(6): 1154-1163. |
| [7] | Jingshu ZHANG, Qian LIU, Xiaole YAO, Chao XU, Xing JU. Hydrated Salt Composite Phase Change Materials for Passive Thermal Management and Safety Protection of Lithium-Ion Batteries [J]. Power Generation Technology, 2025, 46(6): 1164-1175. |
| [8] | Jianlin LI, Yuchen PENG, Qian WANG, Xiaoxia JIANG, Lei WANG. Research Status and Prospect of Lithium-Ion Battery Modelling [J]. Power Generation Technology, 2025, 46(5): 857-871. |
| [9] | Bo ZOU, Jiandi REN, Daoming XU, Lisheng DENG, Lida LIAO, Junbing XIAO. Recent Developments on the Application of Chloride Molten Salt Heat Storage Technology to New Energy Power Generation [J]. Power Generation Technology, 2025, 46(5): 872-884. |
| [10] | Ning MA, Pan ZHAO, Aijie LIU, Wenpan XU, Jiangfeng WANG. Comparison of Characteristics and Exergoeconomic Between Hydrogen and Natural Gas-Fueled Compressed Air Energy Storage Systems [J]. Power Generation Technology, 2025, 46(5): 885-896. |
| [11] | Fugui DONG, Wei ZHANG. Research on Optimization of Operation Strategy for Independent New Energy Storage Power Stations Considering Capacity Value [J]. Power Generation Technology, 2025, 46(5): 897-908. |
| [12] | Shimeng LU, Jianlin SUN, Fanjie ZENG, Xiaojie LIN, Junzhan WU, Tianyi MA, Wei ZHONG, Likun XIE, Wei XIE. Research Progress on Comprehensive Utilization Technologies of Zero-Carbon Geothermal Energy [J]. Power Generation Technology, 2025, 46(5): 909-922. |
| [13] | Xiao LONG, Jinbin ZHANG, Lingte CHEN. Prospects for Future Energy Technologies [J]. Power Generation Technology, 2025, 46(4): 651-693. |
| [14] | Zonglong LUO, Shilin LIU. Optimal Operation of Residential Microgrids Based on a Robust Model Using Information Gap Decision Theory [J]. Power Generation Technology, 2025, 46(4): 705-714. |
| [15] | Haoran MA, Zhi YUAN, Weiqing WANG, Ji LI. Research on Economic Scheduling of Active Distribution Networks With Inclusion of Data Center and Energy Storage [J]. Power Generation Technology, 2025, 46(4): 748-757. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||