Power Generation Technology ›› 2025, Vol. 46 ›› Issue (6): 1144-1153.DOI: 10.12096/j.2096-4528.pgt.24077
• Energy Storage • Previous Articles
Ping ZHANG, Yongqiang LI, Hualiang XING
Received:2024-10-22
Revised:2025-01-29
Published:2025-12-31
Online:2025-12-25
Supported by:CLC Number:
Ping ZHANG, Yongqiang LI, Hualiang XING. Optimization Configuration of Hybrid Energy Storage Capacity for Wind Power Fluctuation Smoothing Based on Variational Mode Decomposition[J]. Power Generation Technology, 2025, 46(6): 1144-1153.
| 风电场装机容量 | 1 min最大波动量 | 10 min最大波动量 |
|---|---|---|
| <30 | 3 | 10 |
| 30~150 | 3~15 | 10~50 |
| >150 | 15 | 50 |
Tab. 1 Standards for grid-connected wind power variation
| 风电场装机容量 | 1 min最大波动量 | 10 min最大波动量 |
|---|---|---|
| <30 | 3 | 10 |
| 30~150 | 3~15 | 10~50 |
| >150 | 15 | 50 |
| 参数 | 原始数据 | 递推平均滤波 | 加权滤波 |
|---|---|---|---|
| 最大波动量(1 min)/MW | 10.710 9 | 4.620 7 | 4.478 2 |
| 最大波动率(1 min)/% | 21.42 | 9.24 | 8.96 |
| 最大波动量(10 min)/MW | 14.876 4 | 12.800 4 | 12.843 2 |
| 最大波动率(10 min)/% | 29.75 | 25.60 | 25.70 |
Tab. 2 Wind power data before and after smoothing
| 参数 | 原始数据 | 递推平均滤波 | 加权滤波 |
|---|---|---|---|
| 最大波动量(1 min)/MW | 10.710 9 | 4.620 7 | 4.478 2 |
| 最大波动率(1 min)/% | 21.42 | 9.24 | 8.96 |
| 最大波动量(10 min)/MW | 14.876 4 | 12.800 4 | 12.843 2 |
| 最大波动率(10 min)/% | 29.75 | 25.60 | 25.70 |
| 参数 | 锂离子电池 | 超级电容 |
|---|---|---|
| 单位功率投资成本/(元/kW) | 9 200 | 1 750 |
| 单位容量投资成本/[元/(kW⋅h)] | 9 300 | 12 300 |
| 单位功率置换成本/(元/kW) | 2 460 | 1 850 |
| 单位容量置换成本/[元/(kW⋅h)] | 9 300 | 12 300 |
| 单位功率运维成本/(元/kW) | 160 | 81 |
| 单位容量运维成本/[元/(kW⋅h)] | 0.015 | 0.013 5 |
| 单位功率辅助成本/(元/kW) | 610 | 610 |
| 单位容量辅助成本/[元/(kW⋅h)] | 0 | 0 |
| 处理成本/(元/kW) | 460 | 94 |
| 充放电效率/% | 85 | 95 |
| SOC范围 | 0.15~0.85 | 0.10~0.95 |
Tab. 3 Parameters of energy storage system
| 参数 | 锂离子电池 | 超级电容 |
|---|---|---|
| 单位功率投资成本/(元/kW) | 9 200 | 1 750 |
| 单位容量投资成本/[元/(kW⋅h)] | 9 300 | 12 300 |
| 单位功率置换成本/(元/kW) | 2 460 | 1 850 |
| 单位容量置换成本/[元/(kW⋅h)] | 9 300 | 12 300 |
| 单位功率运维成本/(元/kW) | 160 | 81 |
| 单位容量运维成本/[元/(kW⋅h)] | 0.015 | 0.013 5 |
| 单位功率辅助成本/(元/kW) | 610 | 610 |
| 单位容量辅助成本/[元/(kW⋅h)] | 0 | 0 |
| 处理成本/(元/kW) | 460 | 94 |
| 充放电效率/% | 85 | 95 |
| SOC范围 | 0.15~0.85 | 0.10~0.95 |
| 配置参数 | 单一储能 | 混合储能 | ||
|---|---|---|---|---|
| 锂离子电池 | EMD | VMD | PSO-VMD | |
| PBN/MW | 6.565 1 | 6.502 7 | 4.982 6 | 4.251 7 |
| EBN/(MW⋅h) | 1.084 9 | 0.772 4 | 1.010 9 | 0.741 4 |
| PSN/MW | 0 | 0.555 9 | 2.051 1 | 1.990 4 |
| ESN/(MW⋅h) | 0 | 0.886 6 | 0.042 4 | 0.051 4 |
| 年综合成本/元 | 3.805 7×107 | 4.525 6×107 | 3.765 5×107 | 2.902×107 |
Tab. 4 HESS capacity configuration results
| 配置参数 | 单一储能 | 混合储能 | ||
|---|---|---|---|---|
| 锂离子电池 | EMD | VMD | PSO-VMD | |
| PBN/MW | 6.565 1 | 6.502 7 | 4.982 6 | 4.251 7 |
| EBN/(MW⋅h) | 1.084 9 | 0.772 4 | 1.010 9 | 0.741 4 |
| PSN/MW | 0 | 0.555 9 | 2.051 1 | 1.990 4 |
| ESN/(MW⋅h) | 0 | 0.886 6 | 0.042 4 | 0.051 4 |
| 年综合成本/元 | 3.805 7×107 | 4.525 6×107 | 3.765 5×107 | 2.902×107 |
| [1] | 李晖,刘栋,姚丹阳 .面向碳达峰碳中和目标的我国电力系统发展研判[J].中国电机工程学报,2021,41(18):6245-6259. |
| LI H, LIU D, YAO D Y .Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J].Proceedings of the CSEE,2021,41(18):6245-6259. | |
| [2] | 卓振宇,张宁,谢小荣,等 .高比例可再生能源电力系统关键技术及发展挑战[J].电力系统自动化,2021,45(9):171-191. doi:10.7500/AEPS20200922001 |
| ZHUO Z Y, ZHANG N, XIE X R,et al .Key technologies and developing challenges of power system with high proportion of renewable energy[J].Automation of Electric Power Systems,2021,45(9):171-191. doi:10.7500/AEPS20200922001 | |
| [3] | 周原冰,张士宁,侯方心,等 .电力行业碳达峰及促进全社会碳减排影响分析[J].中国电力,2024,57(9):1-9. |
| ZHOU Y B, ZHANG S N, HOU F X,et al .Analysis of carbon peaking in power sector and its impact on promoting whole-society carbon emissions reduction[J].Electric Power,2024,57(9):1-9. | |
| [4] | 袁昊,刘宇航,孙洁,等 .“双碳” 背景下新能源并网储能容量优化配置方法[J].电网与清洁能源,2024,40(9):134-140. |
| YUAN H, LIU Y H, SUN J,et al .Energy storage capacity optimization allocation methods for grid-connected new energy under dual-carbon background[J].Power System and Clean Energy,2024,40(9):134-140. | |
| [5] | 张智刚,康重庆 .碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报,2022,42(8):2806-2819. |
| ZHANG Z G, KANG C Q .Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J].Proceedings of the CSEE,2022,42(8):2806-2819. | |
| [6] | 许中,栾乐,莫文雄,罗思敏,等 .基于Logistic快速最小误差熵算法的配电变压器停电预测[J].发电技术,2022,43(2):313-319. |
| XU Z, LUAN L, MO W X,et al .Distribution transformer outage prediction based on logistic fast minimum error entropy algorithm[J].Power Generation Technology,2022,43(2):313-319. | |
| [7] | 王晋君,苟凯杰,陈衡,等 .平抑风电波动的飞轮-电化学混合储能容量优化配置研究[J].动力工程学报,2024,44(3):439-446. |
| WANG J J, GOU K J, CHEN H,et al .Allocation optimization of flywheel-electrochemical hybrid energy storage capacity to stabilize wind power fluctuations[J].Journal of Chinese Society of Power Engineering,2024,44(3):439-446. | |
| [8] | 王新宝,葛景,韩连山,等 .构网型储能支撑新型电力系统建设的思考与实践[J].电力系统保护与控制,2023,51(5):172-179. |
| WANG X B, GE J, HAN L S,et al .Theory and practice of grid-forming BESS supporting the construction of a new type of power system[J].Power System Protection and Control,2023,51(5):172-179. | |
| [9] | 蒋新科,刘春,张雪松,等.基于双储能的风电功率波动平抑策略研究[J].电测与仪表,2025,62(4):19-25. |
| JIANG X K, LIU C, ZHANG X S,et al .Study on strategy for stabilizing wind power fluctuations based on dual energy storage[J].Electrical Measurement & Instrumentation,2025,62(4):19-25. | |
| [10] | 李志军,郭燕龙,苗庆玉.基于解析法的高比例可再生能源系统惯量支撑储能配置[J].电测与仪表,2023,60(11):11-18. |
| LI Z J, GUO Y L, MIAO Q Y,et al .High proportion of renewable energy storage system for inertial support energy storage configuration based on analytical method[J].Electrical Measurement & Instrumentationl,2023,60(11):11-18. | |
| [11] | 林莉,林雨露,谭惠丹,等 .计及SOC自恢复的混合储能平抑风电功率波动控制[J].电工技术学报,2024,39(3):658-671. |
| LIN L, LIN Y L, TAN H D,et al .Hybrid energy storage control with SOC self-recovery to smooth out wind power fluctuations[J].Transactions of China Electrotechnical Society,2024,39(3):658-671. | |
| [12] | 郭东泽,张继红,王庆宇,等 .平抑风电出力波动的混合储能功率分配策略[J].储能科学与技术,2024,13(5):1564-1573. |
| GUO D Z, ZHANG J H, WANG Q Y,et al.Power allocation strategy of hybrid energy storage for smoothing wind power output fluctuations[J].Energy Storage Science and Technology,2024,13(5):1564-1573. | |
| [13] | 赵峰,张帆,陈小强,等 .基于VMD-APSO的风电场混合储能系统容量优化配置[J].高压电器,2023,59(6):120-127. |
| ZHAO F, ZHANG F, CHEN X Q,et al .Optimal configuration of capacity of wind farm hybrid energy storage system based on VMD-APSO algorithm[J].High Voltage Apparatus,2023,59(6):120-127. | |
| [14] | 齐先军,郑夕炜,王晓蓉,等 .基于时频分析的改进小波包风电功率波动平抑方法[J].太阳能学报,2022,43(7):302-309. |
| QI X J, ZHENG X W, WANG X R,et al .Improved wavelet packet method of smoothing wind power fluctuations based on time-frequency analysis[J].Acta Energiae Solaris Sinica,2022,43(7):302-309. | |
| [15] | 秦磊,董海鹰,王润杰 .基于卡尔曼滤波和模型预测控制的混合储能平抑风电功率波动策略[J].电网技术,2024,48(10):4286-4297. |
| QIN L, DONG H Y, WANG R J .Hybrid energy storage based on Kalman filter and model predictive control to smooth out wind power fluctuation strategy[J].Power System Technology,2024,48(10):4286-4297. | |
| [16] | 侯力枫 .风电功率波动平抑下储能出力与平滑能力的动态优化控制策略[J].热力发电,2020,49(8):134-142. |
| HOU L F .Dynamic optimization control strategy for energy storage output power and smoothing ability considering smoothing wind power fluctuation[J].Thermal Power Generation,2020,49(8):134-142. | |
| [17] | 袁铁江,郭建华,杨紫娟,等 .平抑风电波动的电-氢混合储能容量优化配置[J].中国电机工程学报,2024,44(4):1397-1406. |
| YUAN T J, GUO J H, YANG Z J,et al .Optimal allocation of power electric-hydrogen hybrid energy storage of stabilizing wind power fluctuation[J].Proceedings of the CSEE,2024,44(4):1397-1406. | |
| [18] | 刘道兵,李珏岑,齐越,等 .考虑碳效益和运行策略的风电场储能优化配置[J/OL].太阳能学报,2024:1-9..cnki.net/KCMS/detail/detail.aspx?filename=TYLX20240301002&dbname=CJFD&dbcode=CJFQ. |
| LIU D B, LI J C, QI Y,et al .Optimal allocation of wind farm energy storage considering carbon efficiency and operation strategy[J/OL].China Industrial Economics,2024:1-9..cnki.net/KCMS/detail/detail.aspx?filename=TYLX20240301002&dbname=CJFD&dbcode=CJFQ. | |
| [19] | 陈晓光,杨秀媛,王镇林,等 .考虑多目标优化模型的风电场储能容量配置方案[J].发电技术,2022,43(5):718-730. doi:10.12096/j.2096-4528.pgt.22020 |
| CHEN X G, YANG X Y, WANG Z L,et al .Energy storage capacity allocation scheme of wind farm considering multi-objective optimization model[J].Power Generation Technology,2022,43(5):718-730. doi:10.12096/j.2096-4528.pgt.22020 | |
| [20] | 马兰,谢丽蓉,叶林,等 .基于混合储能双层规划模型的风电波动平抑策略[J].电网技术,2022,46(3):1016-1029. |
| MA L, XIE L R, YE L,et al .Wind power fluctuation suppression strategy based on hybrid energy storage bi-level programming model[J].Power System Technology,2022,46(3):1016-1029. | |
| [21] | LI Q S, LI Z, ZHANG Z F,et al .Energy storage capacity optimization strategy for combined wind storage system[J].Energy Reports,2022,8:247-252. doi:10.1016/j.egyr.2022.09.094 |
| [22] | ABDULGALIL M A, KHALID M, ALISMAIL F .Optimizing a distributed wind-storage system under critical uncertainties using benders decomposition[J].IEEE Access,2019,7:77951-77963. doi:10.1109/access.2019.2922619 |
| [23] | 郭俊,刘升伟,赵天阳 .含海上风储联合发电系统的韧性调度策略[J].电力建设,2023,44(2):92-100. |
| GUO J, LIU S W, ZHAO T Y .Resilience scheduling strategy for offshore combined wind-storage power generation system[J].Electric Power Construction,2023,44(2):92-100. | |
| [24] | 汤匀,岳芳,王莉晓,等 .全球新型储能技术发展态势分析[J].全球能源互联网,2024,7(2):228-240. |
| TANG Y, YUE F, WANG L X,et al .International development trend analysis of new energy storage technologies[J].Journal of Global Energy Interconnection,2024,7(2):228-240. | |
| [25] | WANG W S, CHI Y N, ZHANG Z K,et al .Standard on connecting wind farms to power system[J].China Standardization,2016(2):86-89. |
| [26] | 闫群民,刘语忱,董新洲,等 .基于CEEMDAN-HT的平抑光伏出力混合储能容量优化配置[J].电力系统保护与控制,2022,50(21):43-53. |
| YAN Q M, LIU Y C, DONG X Z,et al .Hybrid energy storage capacity optimization configuration for smoothing PV output based on CEEMDAN-HT[J].Power System Protection and Control,2022,50(21):43-53. | |
| [27] | 丁明,吴建锋,朱承治,等 .具备荷电状态调节功能的储能系统实时平滑控制策略[J].中国电机工程学报,2013,33(1):22-29. |
| DING M, WU J F, ZHU C Z,et al .A real-time smoothing control strategy with SOC adjustment function of storage systems[J].Proceedings of the CSEE,2013,33(1):22-29. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||