Power Generation Technology ›› 2025, Vol. 46 ›› Issue (6): 1154-1163.DOI: 10.12096/j.2096-4528.pgt.24068
• Energy Storage • Previous Articles
Xiaowei ZHANG1, Zhenxiao YI2,3,4, Kai WANG2
Received:2024-05-13
Revised:2024-07-20
Published:2025-12-31
Online:2025-12-25
Contact:
Kai WANG
Supported by:CLC Number:
Xiaowei ZHANG, Zhenxiao YI, Kai WANG. State of Health Estimation of On-Board Lithium-Ion Batteries Using Temporal Convolutional Network Optimized by Improved Self-Adaptive Honey Badger Algorithm[J]. Power Generation Technology, 2025, 46(6): 1154-1163.
起始电 压/V | 截止电压/V | ||||||
|---|---|---|---|---|---|---|---|
| 3.6 | 3.7 | 3.8 | 3.9 | 4.0 | 4.1 | 4.2 | |
| 3.5 | 0.616 4 | 0.646 3 | 0.775 8 | 0.902 6 | 0.932 9 | 0.936 6 | 0.937 5 |
| 3.6 | — | 0.686 9 | 0.796 6 | 0.908 7 | 0.933 6 | 0.936 8 | 0.937 4 |
| 3.7 | — | — | 0.835 6 | 0.918 8 | 0.934 5 | 0.936 7 | 0.937 0 |
| 3.8 | — | — | — | 0.928 4 | 0.935 2 | 0.936 1 | 0.935 8 |
| 3.9 | — | — | — | — | 0.934 1 | 0.933 2 | 0.931 6 |
| 4.0 | — | — | — | — | — | 0.917 8 | 0.908 8 |
| 4.1 | — | — | — | — | — | — | 0.880 6 |
Tab. 1 Correlation between charging time at constant voltage difference and battery capacity
起始电 压/V | 截止电压/V | ||||||
|---|---|---|---|---|---|---|---|
| 3.6 | 3.7 | 3.8 | 3.9 | 4.0 | 4.1 | 4.2 | |
| 3.5 | 0.616 4 | 0.646 3 | 0.775 8 | 0.902 6 | 0.932 9 | 0.936 6 | 0.937 5 |
| 3.6 | — | 0.686 9 | 0.796 6 | 0.908 7 | 0.933 6 | 0.936 8 | 0.937 4 |
| 3.7 | — | — | 0.835 6 | 0.918 8 | 0.934 5 | 0.936 7 | 0.937 0 |
| 3.8 | — | — | — | 0.928 4 | 0.935 2 | 0.936 1 | 0.935 8 |
| 3.9 | — | — | — | — | 0.934 1 | 0.933 2 | 0.931 6 |
| 4.0 | — | — | — | — | — | 0.917 8 | 0.908 8 |
| 4.1 | — | — | — | — | — | — | 0.880 6 |
| 滤波方法 | F1 | F2 | F3 | F4 | F5 | F6 |
|---|---|---|---|---|---|---|
| 未处理 | 0.674 3 | 0.673 2 | -0.609 7 | -0.597 4 | 0.665 8 | 0.683 7 |
| MAD | 0.805 1 | 0.829 8 | -0.800 2 | -0.787 2 | 0.781 7 | 0.735 6 |
| SG | 0.882 3 | 0.891 9 | -0.864 8 | -0.857 9 | 0.868 2 | 0.876 3 |
| MAD-SG | 0.937 5 | 0.936 8 | -0.942 5 | -0.941 5 | 0.946 6 | 0.927 2 |
Tab. 2 Correlation analysis of different features
| 滤波方法 | F1 | F2 | F3 | F4 | F5 | F6 |
|---|---|---|---|---|---|---|
| 未处理 | 0.674 3 | 0.673 2 | -0.609 7 | -0.597 4 | 0.665 8 | 0.683 7 |
| MAD | 0.805 1 | 0.829 8 | -0.800 2 | -0.787 2 | 0.781 7 | 0.735 6 |
| SG | 0.882 3 | 0.891 9 | -0.864 8 | -0.857 9 | 0.868 2 | 0.876 3 |
| MAD-SG | 0.937 5 | 0.936 8 | -0.942 5 | -0.941 5 | 0.946 6 | 0.927 2 |
| 电池型号 | RMSE | MAE |
|---|---|---|
| B34 | 0.006 2 | 0.005 1 |
| B35 | 0.006 4 | 0.005 2 |
| B36 | 0.006 9 | 0.006 2 |
| B38 | 0.005 6 | 0.004 8 |
Tab. 3 SOH estimation error analysis of different batteries
| 电池型号 | RMSE | MAE |
|---|---|---|
| B34 | 0.006 2 | 0.005 1 |
| B35 | 0.006 4 | 0.005 2 |
| B36 | 0.006 9 | 0.006 2 |
| B38 | 0.005 6 | 0.004 8 |
| 电池型号 | 模型 | RMSE | MAE |
|---|---|---|---|
| B05 | SA-HBA-TCN | 0.006 2 | 0.005 1 |
| TCN | 0.013 1 | 0.010 1 | |
| LSTM | 0.031 4 | 0.026 5 | |
| B46 | SA-HBA-TCN | 0.006 4 | 0.005 3 |
| TCN | 0.013 8 | 0.011 3 | |
| LSTM | 0.039 1 | 0.028 6 | |
| B29 | SA-HBA-TCN | 0.006 7 | 0.005 8 |
| TCN | 0.012 9 | 0.010 9 | |
| LSTM | 0.042 2 | 0.035 9 |
Tab. 4 SOH estimation error analysis of different batteries under different operating conditions
| 电池型号 | 模型 | RMSE | MAE |
|---|---|---|---|
| B05 | SA-HBA-TCN | 0.006 2 | 0.005 1 |
| TCN | 0.013 1 | 0.010 1 | |
| LSTM | 0.031 4 | 0.026 5 | |
| B46 | SA-HBA-TCN | 0.006 4 | 0.005 3 |
| TCN | 0.013 8 | 0.011 3 | |
| LSTM | 0.039 1 | 0.028 6 | |
| B29 | SA-HBA-TCN | 0.006 7 | 0.005 8 |
| TCN | 0.012 9 | 0.010 9 | |
| LSTM | 0.042 2 | 0.035 9 |
| [1] | 李沂洹,李慷,余渐 .锂离子电池荷电状态与健康状态估计方法[J].发电技术,2021,42(5):537-546. doi:10.12096/j.2096-4528.pgt.21074 |
| LI Y H, LI K, YU J .Estimation approaches for states of charge and health of lithium-ion battery[J].Power Generation Technology,2021,42(5):537-546. doi:10.12096/j.2096-4528.pgt.21074 | |
| [2] | 刘萍,李泽文,蔡雨思,等 .基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法[J].电工技术学报,2024,39(10):3232-3243. |
| LIU P, LI Z W, CAI Y S,et al .Joint estimation method of SOC and SOH based on fusion of equivalent circuit model and data-driven model[J].Transactions of China Electrotechnical Society,2024,39(10):3232-3243. | |
| [3] | 向铭,何怡刚,张慧 .基于改进集成经验模态分解和高斯过程回归的锂离子电池剩余容量及寿命预测方法[J].电测与仪表,2023,60(9):27-33. |
| XIANG M, HE Y G, ZHANG H .Capacity and remaining useful life prediction of lithium-ion battery based on MEEMD and GPR[J].Electrical Measurement & Instrumentation,2023,60(9):27-33. | |
| [4] | 宋海飞,王乐红,原义栋,等 .基于改进自适应卡尔曼滤波算法的锂离子电池荷电状态估计[J].电力系统保护与控制,2024,52(20):72-82. |
| SONG H F, WANG L H, YUAN Y D,et al .State of charge estimation of lithium-ion batteries based on improved adaptive Kalman filter algorithm[J].Power System Protection and Control,2024,52(20):72-82. | |
| [5] | 步传宇,姜昆,任军,等 .基于改进型ASRCKF算法的锂离子电池荷电状态估计[J].广东电力,2020,33(10):16-25. |
| BU C Y, JIANG K, REN J,et al .Estimation of SOC of lithium-ion battery based on improved ASRCKF[J].Guangdong Electric Power,2020,33(10):16-25. | |
| [6] | 李强龙,孙建瑞,赵坤,等 .基于IALO-SVR的锂电池健康状态预测[J].电子测量与仪器学报,2022,36(1):204-211. |
| LI Q L, SUN J R, ZHAO K,et al .Prediction for the state of health of lithium-ion batteries based on IALO-SVR[J].Journal of Electronic Measurement and Instrumentation,2022,36(1):204-211. | |
| [7] | 薄利明,郑惠萍,张世锋,等 .锂电池健康状态均衡技术综述[J].电测与仪表,2023,60(4):11-18. |
| BO L M, ZHENG H P, ZHANG S F,et al .Review on health state equalization technology for lithium batteries[J].Electrical Measurement & Instrumentation,2023,60(4):11-18. | |
| [8] | 赵珈卉,田立亭,程林 .锂离子电池状态估计与剩余寿命预测方法综述[J].发电技术,2023,44(1):1-17. |
| ZHAO J H, TIAN L T, CHENG L .Review on state estimation and remaining useful life prediction methods for lithium-ion battery[J].Power Generation Technology,2023,44(1):1-17. | |
| [9] | BARTLETT A, MARCICKI J, ONORI S,et al .Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery[J].IEEE Transactions on Control Systems Technology,2016,24(2):384-399. |
| [10] | LI J, ADEWUYI K, LOTFI N,et al .A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J].Applied Energy,2018,212:1178-1190. doi:10.1016/j.apenergy.2018.01.011 |
| [11] | SALDAÑA G, MARTÍN J I S, ZAMORA I,et al .Empirical electrical and degradation model for electric vehicle batteries[J].IEEE Access,2020,8:155576-155589. doi:10.1109/access.2020.3019477 |
| [12] | YANG F, SONG X, DONG G,et al .A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries[J].Energy,2019,171:1173-1182. doi:10.1016/j.energy.2019.01.083 |
| [13] | SINGH P, CHEN C, TAN C M,et al .Semi-empirical capacity fading model for SOH estimation of Li-ion batteries[J].Applied Sciences,2019,9(15):3012. doi:10.3390/app9153012 |
| [14] | LAI X, WANG S, MA S,et al .Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries[J].Electrochimica Acta,2020,330:135239. doi:10.1016/j.electacta.2019.135239 |
| [15] | CUI Z, KANG L, LI L,et al .A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures[J].Renewable Energy,2022,198:1328-1340. doi:10.1016/j.renene.2022.08.123 |
| [16] | YU Z, HUAI R, LI H .CPSO-based parameter-identification method for the fractional-order modeling of lithium-ion batteries[J].IEEE Transactions on Power Electronics,2021,36(10):11109-11123. doi:10.1109/tpel.2021.3073810 |
| [17] | LI D, LI S, ZHANG S,et al .Aging state prediction for supercapacitors based on heuristic Kalman filter optimization extreme learning machine[J].Energy,2022,250:123773. doi:10.1016/j.energy.2022.123773 |
| [18] | REN P, WANG S, CHEN X,et al .Fusion estimation strategy based on dual adaptive Kalman filtering algorithm for the state of charge and state of health of hybrid electric vehicle Li-ion batteries[J].International Journal of Energy Research,2022,46(6):7374-7388. doi:10.1002/er.7643 |
| [19] | GOU B, XU Y, FENG X .State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J].IEEE Transactions on Vehicular Technology,2020,69(10):10854-10867. doi:10.1109/tvt.2020.3014932 |
| [20] | SEVERSON K A, ATTIA P M, JIN N,et al .Data-driven prediction of battery cycle life before capacity degradation[J].Nature Energy,2019,4:383-391. doi:10.1038/s41560-019-0356-8 |
| [21] | LI Q, LI D, ZHAO K,et al .State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression[J].Journal of Energy Storage,2022,50:104215. doi:10.1016/j.est.2022.104215 |
| [22] | SUN H, SUN J, ZHAO K,et al .Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation[J].Mathematical Problems in Engineering,2022,2022(1):9645892. doi:10.1155/2022/9645892 |
| [23] | 尚玉朝,刘春豪,王凯 .基于融合优化算法的超级电容器健康状态预测模型[J/OL].发电技术,1-11[2025-01-17].. doi:10.2139/ssrn.5114211 |
| SHANG Y Z, LIU C H, WANG K .Supercapacitor health state prediction model based on fusion optimization algorithm[J/OL].Power Generation Technology,1-11[2025-01-17].. doi:10.2139/ssrn.5114211 | |
| [24] | QU W, SHEN W, LIU J .A joint grey relational analysis based state of health estimation for lithium ion batteries considering temperature effects[J].Journal of Energy Storage,2021,42:103102. doi:10.1016/j.est.2021.103102 |
| [25] | 宋显华,姚全正 .基于片段充电数据和DEKF-WNN-WLSTM的锂电池健康状态实时估计[J].电工技术学报,2024,39(5):1565-1576. |
| SONG X H, YAO Q Z .Real-time state of health estimation for lithium-ion batteries based on daily segment charging data and dual extended Kalman filters wavelet neural network-wavelet long short-term memory neural network[J].Transactions of China Electrotechnical Society,2024,39(5):1565-1576. | |
| [26] | 史宏思,孙新伟,王凯 .基于电化学阻抗谱的锂离子电池健康状态估计[J/OL].发电技术,1-15[2024-07-16].. doi:10.3390/en16155682 |
| 1502.008.html. SHI H S, SUN X W, WANG K .Estimation of the state of health of lithium‑ion batteries based on electrochemical impedance spectroscopy[J/OL].Power Generation Technology,1-15[2024-07-16].. doi:10.3390/en16155682 | |
| [27] | 顾菊平,蒋凌,张新松,等 .基于特征提取的锂离子电池健康状态评估及影响因素分析[J].电工技术学报,2023,38(19):5330-5342. |
| GU J P, JIANG L, ZHANG X S,et al .Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J].Transactions of China Electrotechnical Society,2023,38(19):5330-5342. | |
| [28] | 陈璐,于仲安,熊莹燕 .不同温度下基于PSO-LSSVM的锂电池SOH估计与RUL预测[J].传感器与微系统,2023,42(6):141-145. |
| CHEN L, YU Z A, XIONG Y Y .SOH estimation and RUL prediction of Li battery based on PSO-LSSVM at different temperatures[J].Transducer and Microsystem Technologies,2023,42(6):141-145. | |
| [29] | 胡慧敏,庞知非 .车用锂离子电池健康状态估计[J].汽车实用技术,2023,48(20):1-4. |
| HU H M, PANG Z F .State of health estimation of lithium-ion batteries for vehicles[J].Automobile Applied Technology,2023,48(20):1-4. | |
| [30] | 刘芊彤,邢远秀 .基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J].储能科学与技术,2023,12(1):236-246. |
| LIU Q T, XING Y X .Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J].Energy Storage Science and Technology,2023,12(1):236-246. | |
| [31] | 李凯,胡丽,宋婷婷 .基于CNN-Bi-LSTM的锂离子电池健康状态估算[J].山东电力技术,2023,50(10):66-72. |
| LI K, HU L, SONG T T .Health state estimation of lithium-ion batteries based on CNN-Bi-LSTM[J].Shandong Electric Power,2023,50(10):66-72. | |
| [32] | LIU C, ZHANG Y, SUN J,et al .Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor[J].International Journal of Energy Research,2022,46(3):3034-3043. doi:10.1002/er.7360 |
| [33] | YI Z, CHEN Z, YIN K,et al .Sensing as the key to the safety and sustainability of new energy storage devices[J].Protection and Control of Modern Power Systems,2023,8(1):27. doi:10.1186/s41601-023-00300-2 |
| [34] | ZHANG H, GAO J, KANG L,et al .State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network[J].Energy,2023,283:128742. doi:10.1016/j.energy.2023.128742 |
| [35] | HASHIM F A, HOUSSEIN E H, HUSSAIN K,et al .Honey badger algorithm:new metaheuristic algorithm for solving optimization problems[J].Mathematics and Computers in Simulation,2022,192:84-110. doi:10.1016/j.matcom.2021.08.013 |
| [1] | Zongbo ZHAN, Jiping REN, Liping DING, Zhaolong SUN, Heng DING, Yue CAO. Research on Modeling and Rapid Load Change Control Strategy for High Back- Pressure Extraction-Condensing Combined Heat and Power System [J]. Power Generation Technology, 2025, 46(6): 1074-1084. |
| [2] | Bin LUO, Xiaolong BAI, Tianlei ZANG, Yan HUANG, Lin ZHANG, Meng LI, Xuexia ZHANG, Yonglong JIANG. Review of Research on Wind-Solar-Hydro Complementary Power Generation Systems [J]. Power Generation Technology, 2025, 46(6): 1097-1111. |
| [3] | Xi WANG, Xinyi CHEN. Power Prediction Method for Offshore Wind Farms Based on Temporal Convolutional Network-Transformer [J]. Power Generation Technology, 2025, 46(6): 1123-1132. |
| [4] | Feng CHEN, Xiaomin LU, Bing SHEN, Junpeng WANG. Bi-Level Planning Model for Distributed Energy Storage Based on Accommodation-Supply Security Game [J]. Power Generation Technology, 2025, 46(6): 1133-1143. |
| [5] | Ping ZHANG, Yongqiang LI, Hualiang XING. Optimization Configuration of Hybrid Energy Storage Capacity for Wind Power Fluctuation Smoothing Based on Variational Mode Decomposition [J]. Power Generation Technology, 2025, 46(6): 1144-1153. |
| [6] | Jianlin LI, Yuchen PENG, Qian WANG, Xiaoxia JIANG, Lei WANG. Research Status and Prospect of Lithium-Ion Battery Modelling [J]. Power Generation Technology, 2025, 46(5): 857-871. |
| [7] | Bo ZOU, Jiandi REN, Daoming XU, Lisheng DENG, Lida LIAO, Junbing XIAO. Recent Developments on the Application of Chloride Molten Salt Heat Storage Technology to New Energy Power Generation [J]. Power Generation Technology, 2025, 46(5): 872-884. |
| [8] | Ning MA, Pan ZHAO, Aijie LIU, Wenpan XU, Jiangfeng WANG. Comparison of Characteristics and Exergoeconomic Between Hydrogen and Natural Gas-Fueled Compressed Air Energy Storage Systems [J]. Power Generation Technology, 2025, 46(5): 885-896. |
| [9] | Fugui DONG, Wei ZHANG. Research on Optimization of Operation Strategy for Independent New Energy Storage Power Stations Considering Capacity Value [J]. Power Generation Technology, 2025, 46(5): 897-908. |
| [10] | Kun ZHUANG, Zhonghong WANG, Yifan ZHANG, Wenqian YIN, Maoyun LEI, Jing ZHU, Feng LI, Jilei YE. Economic Model and Key Influencing Factors of Rooftop Distributed Photovoltaic Power Generation in the Whole County [J]. Power Generation Technology, 2025, 46(5): 950-958. |
| [11] | Yanan LU, Tao XU, Zenan LIU. Effect of Hydrogen Production System on Sub-Synchronous Oscillation Characteristics of Doubly Fed Induction Generator Systems With Series Compensation [J]. Power Generation Technology, 2025, 46(4): 715-726. |
| [12] | Haoran MA, Zhi YUAN, Weiqing WANG, Ji LI. Research on Economic Scheduling of Active Distribution Networks With Inclusion of Data Center and Energy Storage [J]. Power Generation Technology, 2025, 46(4): 748-757. |
| [13] | Jie WANG, Lijun XU, Xiaozhu LI, Xiaochao FAN, GULIZHATI∙Hailati, Weiqing WANG. Coordinated Optimization of Intelligent Soft Open Points and Multiple Types of Shared Energy Storage in Distribution Networks Considering Flexibility Deficiency Risk [J]. Power Generation Technology, 2025, 46(4): 758-767. |
| [14] | Guangyu WEI, Xiaodong YING, Yanjun YAO, Xiaofang YANG, Chudi WENG, Yonggang PENG, Hailong LI. Power Coordinated Control Strategy for Grid-Connected DC Microgrid Considering State of Charge [J]. Power Generation Technology, 2025, 46(4): 788-796. |
| [15] | Jiajia LIU, Xing JU. Techno-Economic Analysis of Photovoltaic-Concentrating Solar Power Hybrid System for Thermal Energy Storage of Electricity Curtailment [J]. Power Generation Technology, 2025, 46(4): 807-817. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||