| [1] |
胡琴,王欢,舒立春,等 .覆冰条件下风力发电机叶片防/除冰方法综述[J].电工技术学报,2024,39(17):5482-5496.
|
|
HU Q, WANG H, SHU L C,et al .Review of anti-/ de-icing methods for wind turbine blades under icing conditions[J].Transactions of China Electrotechnical Society,2024,39(17):5482-5496.
|
| [2] |
刘志超,王洪彬,沙浩,等 .我国风电利用技术现状及其前景分析[J].发电技术,2019,40(4):389-395. doi:10.12096/j.2096-4528.pgt.18249
|
|
LIU Z C, WANG H B, SHA H,et al .Status and prospect analysis of wind power utilization technology in China[J].Power Generation Technology,2019,40(4):389-395. doi:10.12096/j.2096-4528.pgt.18249
|
| [3] |
崔超,赵允涛,黄文慧,等 .机械通风直接空冷系统噪声预测与分析[J].发电技术,2018,39(5):443-448.
|
|
CUI C, ZHAO Y T, HUANG W H,et al .Noise prediction and analysis of mechanical draft direct dry cooling system[J].Power Generation Technology,2018,39(5):443-448.
|
| [4] |
韩爽,刘杉 .高空风力发电关键技术、现状及发展趋势[J].分布式能源,2024,9(1):1-9.
|
|
HAN S, LIU S .Key technologies,current status and development trends of high-altitude wind power generation[J].Distributed Energy,2024,9(1):1-9.
|
| [5] |
严新荣,张宁宁,马奎超,等 .我国海上风电发展现状与趋势综述[J].发电技术,2024,45(1):1-12. doi:10.12096/j.2096-4528.pgt.23093
|
|
YAN X R, ZHANG N N, MA K C,et al .Overview of current situation and trend of offshore wind power development in China[J].Power Generation Technology,2024,45(1):1-12. doi:10.12096/j.2096-4528.pgt.23093
|
| [6] |
刘忠德,周强,雷和林,等 .基于多传热模型数值仿真的风电机组叶片气热防除冰性能强化[J].电力科学与技术学报,2024,39(4):160-168.
|
|
LIU Z D, ZHOU Q, LEI H L,et al .Performance enhancement of gas heat prevention and deicing of wind turbine blades based on numerical simulation of multi-heat transfer model[J].Journal of Electric Power Science and Technology,2024,39(4):160-168.
|
| [7] |
阳薇,秦川,曾毓琳,等 .桂北低温冰冻天气对高山风力发电的影响分析[J].南方能源建设,2025,12(6):142-151.
|
|
YANG W, QIN C, ZENG Y L,et al .Analysis of the impact of low temperature and freezing weather in northern Guangxi on high-altitude wind power generation[J].Southern Energy Construction,2025,12(6):142-151.
|
| [8] |
胡蓓,吴永康,郭子君,等 .风力发电叶片裂缝监测技术综述[J].高压电器,2022,58(7):93-100.
|
|
HU B, WU Y K, GUO Z J,et al .Review of wind turbine blade crack monitoring technology[J].High Voltage Apparatus,2022,58(7):93-100.
|
| [9] |
HABIBI H, EDWARDS G, SANNASSY C,et al .Modelling and empirical development of an anti/de-icing approach for wind turbine blades through superposition of different types of vibration[J].Cold Regions Science and Technology,2016,128:1-12. doi:10.1016/j.coldregions.2016.04.012
|
| [10] |
卓毅鑫,秦意茗,胡甲秋,等 .基于组合权重的多模式融合风机气温预测方法[J].南方电网技术,2023,17(2):111-117.
|
|
ZHUO Y X, QIN Y M, HU J Q,et al .Multi-mode fusion fan temperature prediction method based on combination weight[J].Southern Power System Technology,2023,17(2):111-117.
|
| [11] |
李宁波,闫涛,李乃鹏,等 .基于SCADA数据的风机叶片结冰检测方法[J].发电技术,2018,39(1):58-62.
|
|
LI N B, YAN T, LI N P,et al .Ice detection method by using SCADA data on wind turbine blades[J].Power Generation Technology,2018,39(1):58-62.
|
| [12] |
孔祥逸 .风力机叶片覆冰预测及气动性能影响分析[D].大连:大连理工大学,2022.
|
|
KONG X Y .Prediction of wind turbine blade ice cover and analysis of aerodynamic performance after ice cover[D].Dalian:Dalian University of Technology,2022.
|
| [13] |
汤伟,桑旬,刘家兵,等 .基于优化SVRM的输电线路短时期覆冰厚度预测模型研究[J].陕西科技大学学报,2023,41(4):151-157.
|
|
TANG W, SANG X, LIU J B,et al .Study on short-term ice thickness prediction model of transmission lines based on optimized SVRM[J].Journal of Shaanxi University of Science & Technology,2023,41(4):151-157.
|
| [14] |
潘浩,周仿荣,马仪,等 .输电线路覆冰情势与气象要素关联模型研究[J].高压电器,2023,59(12):75-82.
|
|
PAN H, ZHOU F R, MA Y,et al .Association model for icing situation with meteorological factors for transmission line[J].High Voltage Apparatus,2023,59(12):75-82.
|
| [15] |
朱显辉,于越,师楠,等 .BP神经网络的分层优化研究及其在风电功率预测中的应用[J].高压电器,2022,58(2):158-163.
|
|
ZHU X H, YU Y, SHI N,et al .Research on hierarchical optimization of BP neural network and its application in wind power prediction[J].High Voltage Apparatus,2022,58(2):158-163.
|
| [16] |
张海兵,吴海涛,胡琴,等 .直流电场强度对导线雨淞覆冰及其电晕损失的影响[J].高压电器,2022,58(8):275-279.
|
|
ZHANG H B, WU H T, HU Q,et al .Influence of DC electric field intensity on conductor glaze icing and its corona loss[J].High Voltage Apparatus,2022,58(8):275-279.
|
| [17] |
王绍龙 .水平轴风力机叶片结冰分布数值模拟与冰风洞试验研究[D].哈尔滨:东北农业大学,2017.
|
|
WANG S L .Numerical simulation and icing wind tunnel test study on icing distribution on blade of horizontal axis wind turbine[D].Haerbin:Northeast Agricultural University,2017.
|
| [18] |
XIAO J, LI C, LIU B,et al .Prediction of wind turbine blade icing fault based on selective deep ensemble model[J].Knowledge-Based Systems,2022,242:108290. doi:10.1016/j.knosys.2022.108290
|
| [19] |
吕云龙,胡琴,胡紫园,等 .考虑样本不平衡条件下风机叶片覆冰诊断及其可解释性研究[J].电工技术学报,2025,40(11):3667-3679.
|
|
LÜ Y L, HU Q, HU Z Y,et al .Diagnosis and interpretability study of wind turbine blade icing under consideration of sample imbalance conditions[J].Transactions of China Electrotechnical Society,2025,40(11):3667-3679.
|
| [20] |
黄晟,凌吉莉,魏娟,等 .大规模风电机群服役质量调控方法研究综述[J].电工技术学报,2025,40(10):3274-3300.
|
|
HUANG S, LING J L, WEI J,et al .A review of regulation method of service quality of large-scale wind farm[J].Transactions of China Electrotechnical Society,2025,40(10):3274-3300.
|
| [21] |
熊昌全,何泽其,张宇宁,等 .基于Bi-LSTM和支持向量机的风机叶片短期覆冰状态预测模型[J].四川电力技术,2021,44(3):88-94.
|
|
XIONG C Q, HE Z Q, ZHANG Y N,et al .Short-term icing status prediction model of wind turbine blades based on Bi-LSTM and SVM models[J].Sichuan Electric Power Technology,2021,44(3):88-94.
|
| [22] |
于童,李英娜 .基于Attention-WOA-BiLSTM的输电塔线路等值覆冰厚度预测模型[J].数据通信,2023(1):48-54.
|
|
YU T, LI Y N .Prediction model of equivalent ice thickness on transmission tower lines based on attention-WOA-BiLSTM[J].Data Communication,2023(1):48-54.
|
| [23] |
张好雨 .基于SCADA数据的风机叶片覆冰故障检测与预测[D].北京:北京交通大学,2022. doi:10.1109/ccdc55256.2022.10033566
|
|
ZHANG H Y .Detection and prediction of wind turbine blade icing fault based on SCADA data [D].Beijing:Beijing Jiaotong University,2022. doi:10.1109/ccdc55256.2022.10033566
|
| [24] |
马飞宇,张春芝,李飞宇 .基于神经网络技术的风力机叶片覆冰预测方法[J].复合材料科学与工程,2022(11):96-101.
|
|
MA F Y, ZHANG C Z, LI F Y .Icing condition prediction of wind turbine blade based on neural network technology[J].Composites Science and Engineering,2022(11):96-101.
|
| [25] |
WANG J, TANG Z, LU P .Ice detection and voice alarm of wind turbine blades based on belief network[J].International Journal of Speech Technology,2021,27(2):1-10.
|
| [26] |
ZHANG D, TIAN W, CHENG X,et al .FedBIP:a federated learning-based model for wind turbine blade icing prediction[J].IEEE Transactions on Instrumentation and Measurement,2023,72:3516011. doi:10.1109/tim.2023.3273675
|
| [27] |
LI Y, HOU L, TANG M,et al .Prediction of wind turbine blades icing based on feature selection and 1D-CNN-SBiGRU[J].Multimedia Tools and Applications,2022,81(3):4365-4385. doi:10.1007/s11042-021-11700-7
|
| [28] |
杨子民,彭小圣,熊予涵,等 .计及邻近风电场信息与CNN-BiLSTM的短期风电功率预测[J].南方电网技术,2023,17(2):47-56.
|
|
YANG Z M, PENG X S, XIONG Y H,et al .Short-term wind power prediction based on information in neighboring wind farms and CNN-BiLSTM[J].Southern Power System Technology,2023,17(2):47-56.
|
| [29] |
XU J, TAN W, LI T .Predicting fan blade icing by using particle swarm optimization and support vector machine algorithm[J].Computers & Electrical Engineering,2020,87:106751. doi:10.1016/j.compeleceng.2020.106751
|
| [30] |
TAO C, TAO T, BAI X,et al .Wind turbine blade icing prediction using focal loss function and CNN-attention-GRU algorithm[J].Energies,2023,16(15):5621. doi:10.3390/en16155621
|
| [31] |
LI S, PENG Y,BIN G .Prediction of wind turbine blades icing based on CJBM with imbalanced data[J].IEEE Sensors Journal,2023,23(17):19726-19736. doi:10.1109/jsen.2023.3296086
|
| [32] |
PRYOR S C, LETSON F, SHEPHERD T,et al .Evaluation of WRF simulation of deep convection in the U.S.Southern Great Plains[J].Journal of Applied Meteorology and Climatology,62(1):41-62. doi:10.1175/jamc-d-22-0090.1
|
| [33] |
李亚光,李蒙 .基于深度小世界神经网络的风电机组异常检测[J].发电技术,2021,42(3):313-321. doi:10.12096/j.2096-4528.pgt.20091
|
|
LI Y G, LI M .Anomaly detection of wind turbines based on deep small-world neural network[J].Power Generation Technology,2021,42(3):313-321. doi:10.12096/j.2096-4528.pgt.20091
|
| [34] |
MOAYEDI H, CANATALAY P J, AHMADI DEHRASHID A,et al .Multilayer perceptron and their comparison with two nature-inspired hybrid techniques of biogeography-based optimization (BBO) and backtracking search algorithm (BSA) for assessment of landslide susceptibility[J].Land,2023,12(1):242. doi:10.3390/land12010242
|
| [35] |
张驰,郭媛,黎明 .人工神经网络模型发展及应用综述[J].计算机工程与应用,2021,57(11):57-69.
|
|
ZHANG C, GUO Y, LI M .Review of development and application of artificial neural network models[J].Computer Engineering and Applications,2021,57(11):57-69.
|
| [36] |
徐曼,乔颖,鲁宗相 .短期风电功率预测误差综合评价方法[J].电力系统自动化,2011,35(12):20-26.
|
|
XU M, QIAO Y, LU Z X .A comprehensive error evaluation method for short-term wind power prediction[J].Automation of Electric Power Systems,2011,35(12):20-26.
|