Power Generation Technology ›› 2024, Vol. 45 ›› Issue (6): 1105-1113.DOI: 10.12096/j.2096-4528.pgt.22151
• Power Generation and Environmental Protection • Previous Articles
Jianning DONG, Jizhen AN, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG
Received:
2023-09-06
Revised:
2023-10-26
Published:
2024-12-31
Online:
2024-12-30
Contact:
Heng CHEN
Supported by:
CLC Number:
Jianning DONG, Jizhen AN, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Performance Prediction Method for Air Cooling System of Thermal Power Unit Considering Weather Effect[J]. Power Generation Technology, 2024, 45(6): 1105-1113.
时间/ min | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.95 | 0.95 | 0.94 | 0.93 | 0.92 | 0.91 | 0.89 | 0.87 | 0.85 | 0.83 | 0.81 | 0.78 |
Tab. 1 Goodness of fit between predicted value and actual value in initial modeling
时间/ min | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.95 | 0.95 | 0.94 | 0.93 | 0.92 | 0.91 | 0.89 | 0.87 | 0.85 | 0.83 | 0.81 | 0.78 |
参数 | 时间/min | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | |
原测试集 | 0.95 | 0.95 | 0.94 | 0.93 | 0.92 | 0.91 | 0.89 | 0.87 | 0.85 | 0.83 | 0.81 | 0.78 |
去大气压 | 0.97 | 0.97 | 0.96 | 0.96 | 0.95 | 0.93 | 0.92 | 0.90 | 0.89 | 0.87 | 0.85 | 0.82 |
去温度 | 0.94 | 0.93 | 0.91 | 0.90 | 0.89 | 0.88 | 0.87 | 0.85 | 0.85 | 0.83 | 0.82 | 0.80 |
去风速 | 0.94 | 0.94 | 0.92 | 0.92 | 0.91 | 0.89 | 0.87 | 0.85 | 0.83 | 0.81 | 0.78 | 0.76 |
去风向 | 0.96 | 0.95 | 0.94 | 0.94 | 0.92 | 0.91 | 0.89 | 0.87 | 0.86 | 0.83 | 0.81 | 0.78 |
去排汽压力 | 0.90 | 0.90 | 0.87 | 0.86 | 0.85 | 0.82 | 0.78 | 0.76 | 0.73 | 0.70 | 0.66 | 0.63 |
去排汽温度 | 0.94 | 0.93 | 0.91 | 0.90 | 0.88 | 0.86 | 0.83 | 0.81 | 0.77 | 0.75 | 0.72 | 0.68 |
去主汽压力 | 0.94 | 0.94 | 0.93 | 0.93 | 0.92 | 0.91 | 0.89 | 0.88 | 0.86 | 0.84 | 0.82 | 0.80 |
去主汽温度 | 0.96 | 0.95 | 0.94 | 0.94 | 0.92 | 0.91 | 0.89 | 0.88 | 0.86 | 0.83 | 0.81 | 0.79 |
去风机转速 | 0.93 | 0.93 | 0.92 | 0.92 | 0.91 | 0.89 | 0.87 | 0.86 | 0.85 | 0.83 | 0.81 | 0.79 |
去主汽流量 | 0.96 | 0.96 | 0.95 | 0.94 | 0.93 | 0.92 | 0.91 | 0.89 | 0.88 | 0.85 | 0.83 | 0.81 |
去给水流量 | 0.96 | 0.96 | 0.94 | 0.94 | 0.93 | 0.91 | 0.89 | 0.88 | 0.86 | 0.84 | 0.82 | 0.79 |
去凝器真空 | 0.87 | 0.88 | 0.87 | 0.87 | 0.86 | 0.85 | 0.85 | 0.83 | 0.83 | 0.80 | 0.78 | 0.77 |
去凝结水流量 | 0.94 | 0.94 | 0.93 | 0.92 | 0.91 | 0.90 | 0.88 | 0.87 | 0.85 | 0.83 | 0.81 | 0.79 |
去凝结水温度 | 0.94 | 0.93 | 0.92 | 0.92 | 0.91 | 0.90 | 0.88 | 0.86 | 0.85 | 0.83 | 0.80 | 0.78 |
Tab. 2 Comparison of R2 after removing each feature
参数 | 时间/min | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | |
原测试集 | 0.95 | 0.95 | 0.94 | 0.93 | 0.92 | 0.91 | 0.89 | 0.87 | 0.85 | 0.83 | 0.81 | 0.78 |
去大气压 | 0.97 | 0.97 | 0.96 | 0.96 | 0.95 | 0.93 | 0.92 | 0.90 | 0.89 | 0.87 | 0.85 | 0.82 |
去温度 | 0.94 | 0.93 | 0.91 | 0.90 | 0.89 | 0.88 | 0.87 | 0.85 | 0.85 | 0.83 | 0.82 | 0.80 |
去风速 | 0.94 | 0.94 | 0.92 | 0.92 | 0.91 | 0.89 | 0.87 | 0.85 | 0.83 | 0.81 | 0.78 | 0.76 |
去风向 | 0.96 | 0.95 | 0.94 | 0.94 | 0.92 | 0.91 | 0.89 | 0.87 | 0.86 | 0.83 | 0.81 | 0.78 |
去排汽压力 | 0.90 | 0.90 | 0.87 | 0.86 | 0.85 | 0.82 | 0.78 | 0.76 | 0.73 | 0.70 | 0.66 | 0.63 |
去排汽温度 | 0.94 | 0.93 | 0.91 | 0.90 | 0.88 | 0.86 | 0.83 | 0.81 | 0.77 | 0.75 | 0.72 | 0.68 |
去主汽压力 | 0.94 | 0.94 | 0.93 | 0.93 | 0.92 | 0.91 | 0.89 | 0.88 | 0.86 | 0.84 | 0.82 | 0.80 |
去主汽温度 | 0.96 | 0.95 | 0.94 | 0.94 | 0.92 | 0.91 | 0.89 | 0.88 | 0.86 | 0.83 | 0.81 | 0.79 |
去风机转速 | 0.93 | 0.93 | 0.92 | 0.92 | 0.91 | 0.89 | 0.87 | 0.86 | 0.85 | 0.83 | 0.81 | 0.79 |
去主汽流量 | 0.96 | 0.96 | 0.95 | 0.94 | 0.93 | 0.92 | 0.91 | 0.89 | 0.88 | 0.85 | 0.83 | 0.81 |
去给水流量 | 0.96 | 0.96 | 0.94 | 0.94 | 0.93 | 0.91 | 0.89 | 0.88 | 0.86 | 0.84 | 0.82 | 0.79 |
去凝器真空 | 0.87 | 0.88 | 0.87 | 0.87 | 0.86 | 0.85 | 0.85 | 0.83 | 0.83 | 0.80 | 0.78 | 0.77 |
去凝结水流量 | 0.94 | 0.94 | 0.93 | 0.92 | 0.91 | 0.90 | 0.88 | 0.87 | 0.85 | 0.83 | 0.81 | 0.79 |
去凝结水温度 | 0.94 | 0.93 | 0.92 | 0.92 | 0.91 | 0.90 | 0.88 | 0.86 | 0.85 | 0.83 | 0.80 | 0.78 |
时间/min | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.98 | 0.98 | 0.98 | 0.97 | 0.97 | 0.96 | 0.95 | 0.94 | 0.93 | 0.91 | 0.90 | 0.89 |
Tab. 3 R2 of predicted value after removing invalid feature
时间/min | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.98 | 0.98 | 0.98 | 0.97 | 0.97 | 0.96 | 0.95 | 0.94 | 0.93 | 0.91 | 0.90 | 0.89 |
时间/min | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.96 | 0.95 | 0.95 | 0.93 | 0.92 | 0.91 |
Tab. 4 Goodness of fit of predicted values after combining weather forecast data
时间/min | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.96 | 0.95 | 0.95 | 0.93 | 0.92 | 0.91 |
1 | 肖金平,郭民臣 .发电厂直接空冷技术研究现状及展望[J].中国电力教育,2009(S1):383-385. |
XIAO J P, GUO M C .Research status and prospect of direct air cooling technology in power plants[J].China Electric Power Education,2009(S1):383-385. | |
2 | 王河,李跃东,秦志国,等 .基于空冷岛性能在线监测的风机优化调节[J].中国电力,2018,51(8):154-161. |
WANG H, LI Y D, QIN Z G,et al .Optimization and regulation of fans based on online monitoring of air-cooled island[J].Electric Power,2018,51(8):154-161. | |
3 | 曾宇川 .基于大数据与人工智能的燃煤电站直接空冷系统状态评估和运行优化[D].北京:华北电力大学,2021. |
ZENG Y C .State evaluation and operation optimization of direct air-cooling system in coal-fired power plant based on big data and artificial intelligence[D].Beijing:North China Electric Power University,2021. | |
4 | 刘晓雄,蔺红 .基于模型预测控制的源荷储低碳经济调度[J].电测与仪表,2024,61(7):153-160. |
LIU X X, LIN H .Low-carbon economic dispatching of source,load and storage based on model predictive control[J].Electrical Measurement & Instrumentation,2024,61(7):153-160. | |
5 | 李高扬,王宁,高若田,等 .面向新型电力系统智能化提效的多源异构数据融合技术研究[J].电测与仪表,2024,61(11):116-121. |
LI G Y, WANG N, GAO R T,et al .Research on multi-source heterogeneous data integration technology for smart efficiency improvement in novel power system[J].Electrical Measurement & Instrumentation,2024,61(11):116-121. | |
6 | 朱继忠,苗雨旺,董朝阳,等 .基于Attention-LSTM与多模型集成的短期负荷预测方法[J].电力工程技术,2023,42(5):138-147. |
ZHU J Z, MIAO Y W, DONG C Y,et al .Short-term load forecasting method based on Attention-LSTM and multi-model integration[J].Electric Power Engineering Technology,2023,42(5):138-147. | |
7 | 马文忠,管增嘉,张奎同,等 .基于模型预测的VSC-MTDC协调控制策略[J].电力工程技术,2022,41(6):75-81. |
MA W Z, GUAN Z J, ZHANG K T,et al .Coordinate control strategy of VSC-MTDC based on model predictive control[J].Electric Power Engineering Technology,2022,41(6):75-81. | |
8 | 李永斌 .短期电力负荷预测模型的建立与应用[J].计算机仿真,2011,28(10):316-319. |
LI Y B .Establishment and application of short-term power load forecasting[J].Computer Simulation,2011,28(10):316-319. | |
9 | 陈卓,孙龙祥 .基于深度学习LSTM网络的短期电力负荷预测方法[J].电子技术,2018,47(1):39-41. |
CHEN Z, SUN L X .Short-term electrical load forecasting based on deep learning LSTM networks[J].Electronic Technology,2018,47(1):39-41. | |
10 | 杨国田,张涛,王英男,等 .基于长短期记忆神经网络的火电厂NO x 排放预测模型[J].热力发电,2018,47(10):12-17. |
YANG G T, ZHANG T, WANG Y N,et al .Prediction model for NOx emissions from thermal power plants based on long-short-term memory neural network[J].Thermal Power Generation,2018,47(10):12-17. | |
11 | HOCHREITER S, SCHMIDHUBER J .Long short-term memory[J].Oral Oncology,1997,9(8):1735-1780. doi:10.1162/neco.1997.9.8.1735 |
12 | GRAVES A, MOHAMED A R, HINTON G .Speech recognition with deep recurrent neural networks[C]//IEEE International Conference on Acoustics.IEEE, 2013. doi:10.1109/icassp.2013.6638947 |
13 | 邵宜祥,刘剑,胡丽萍,等 .一种改进组合神经网络的超短期风速预测方法研究[J].发电技术,2024,45(2):323-330. |
SHAO Y X, LIU J, HU L P,et al .Research on an ultra-short-term wind speed prediction method based on improved combined neural networks[J].Power Generation Technology,2024,45(2):323-330. | |
14 | 苏创世 .基于优化ELM算法的电站凝汽器故障诊断[D].北京:华北电力大学,2019. |
SU C S .Fault diagnosis for power plant condenser based on optimized ELM algorithm[D].Beijing:North China Electric Power University,2019. | |
15 | 何川,郭立君 .泵与风机[M].4版.北京:中国电力出版社,2008. |
HE C, GUO L J .Thermal energy & power[M].4th ed.Beijing:China Electric Power Press,2008. | |
16 | 谢勤岚 .图像降噪的自适应高斯平滑滤波器[J].计算机工程与应用,2009,45(16):182-184. |
XIE Q L .Adaptive Gaussian smoothing filter for image denoising[J].Computer Engineering and Applications,2009,45(16):182-184. | |
17 | LI Y, LI Z, WANG H,et al .CaO carbonation kinetics determined using micro-fluidized bed thermogravimetric analysis[J].Fuel,2020,264:116823. doi:10.1016/j.fuel.2019.116823 |
18 | 章敏敏,徐和平,王晓洁,等 .谷歌TensorFlow机器学习框架及应用[J].微型机与应用,2017,36(10):58-60. |
ZHANG M M, XU H P, WANG X J,et al .Application of Google TensorFlow machine learning framework[J].Microcomputer&Its Applications,2017,36(10):58-60. | |
19 | 周飞燕,金林鹏,董军 .卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. doi:10.11897/SP.J.1016.2017.01229 |
ZHOU F Y, JIN L P, DONG J .Review of convolutional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251. doi:10.11897/SP.J.1016.2017.01229 | |
20 | 陈代俊,陈里里,李阳涛 .联合循环发电站电力输出预测[J].发电技术,2024,45(1):99-105. |
CHEN D J, CHEN L L, LI Y T .Electrical power output prediction of combined cycle power station[J].Power Generation Technology,2024,45(1):99-105. | |
21 | 卢泓宇,张敏,刘奕群,等 .卷积神经网络特征重要性分析及增强特征选择模型[J].软件学报,2017,28(11):2879-2890. |
LU H Y, ZHANG M, LIU Y Q,et al .Convolution neural network feature importance analysis and feature selection enhanced model[J].Journal of Software,2017,28(11):2879-2890. | |
22 | 黄树帮,陈耀,金宇清 .碳中和背景下多通道特征组合超短期风电功率预测[J].发电技术,2021,42(1):60-68. doi:10.12096/j.2096-4528.pgt.20103 |
HUANG S B, CHEN Y, JIN Y Q .A multi-channel feature combination model for Ultra-short-term wind power prediction under carbon neutral background[J].Power Generation Technology,2021,42(1):60-68. doi:10.12096/j.2096-4528.pgt.20103 | |
23 | BOX G, JENKINS G M, REINSEL G C. Time series analysis forecasting and control-rev.ed.[J].Journal of Time,1976,31(2):238-242. |
24 | DURBIN J, KOOPMAN S J .Time series analysis by state space methods[M].2nd ed.Oxford:Oxford University Press,2012. doi:10.1093/acprof:oso/9780199641178.001.0001 |
[1] | Lixiang QIU, Chao HUANG, Gaosheng WEI, Liu CUI, Xiaoze DU. Effect of Particle Agglomeration on Thermal Conductivity of Solar Salt Nanofluids [J]. Power Generation Technology, 2024, 45(5): 878-887. |
[2] | Tingting XIE, Youyuan SUN, Zhen GUO, Mingguang SONG. Summary of Research and Application of Continuous Monitoring Technology for Carbon Emissions From Thermal Power Units [J]. Power Generation Technology, 2024, 45(5): 919-928. |
[3] | Qiwei ZHENG, Xinyue ZHAO, Di LU, Heng CHEN, Peiyuan PAN, Tong LIU. Comparative Evaluation of Thermoelectric Decoupling Potential and Economy of Multi-Type Small Capacity Thermal Power Units [J]. Power Generation Technology, 2024, 45(5): 929-940. |
[4] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[5] | Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU. Analysis on Thermoelectric Decoupling Technology Paths for Thermal Power Units Under the Background of Deep Peak-Shaving [J]. Power Generation Technology, 2024, 45(2): 207-215. |
[6] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[7] | Zheng YANG, Yipeng SUN, Zhiqiang WEN, Liang CHENG, Zhanguo LI. Research on Dry-Wet Conversion Strategy of Supercritical Thermal Power Units Under Deep Peaking Condition [J]. Power Generation Technology, 2024, 45(2): 233-239. |
[8] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[9] | Yanbing LI, Shuwang JIA, Junliang ZHANG, Yue FU, Ming LIU, Junjie YAN. Exergy Economic Analysis of Ultra-Supercritical Coal-Fired Power Plants With High-Level Layout of Turbine Under Load-Cycling Conditions [J]. Power Generation Technology, 2024, 45(1): 69-78. |
[10] | Jingcheng SU, Zhiqiang WANG, Jiangjiang QU, Kai ZHANG. Pressure Difference Prediction of Air Preheater in Coal-Fired Power Plant Based on BP Neural Network and Support Vector Regression [J]. Power Generation Technology, 2023, 44(4): 550-556. |
[11] | Jizhen AN, Fuhao ZHENG, Yifan LIU, Heng CHEN, Gang XU. Study on Induced Draft Fan Fault Warning of Thermal Power Unit Based on Big Data Analysis [J]. Power Generation Technology, 2023, 44(4): 557-564. |
[12] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
[13] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[14] | Cunwen LI, Zaihua WANG, Tao CHEN, Qianwei FENG, Ketao XU, Yang ZHANG. Research on Performance Prediction of Flue Gas Desulfurization System Based on Operation Data of Coal-fired Power Station [J]. Power Generation Technology, 2022, 43(4): 673-678. |
[15] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||