Power Generation Technology ›› 2026, Vol. 47 ›› Issue (1): 133-144.DOI: 10.12096/j.2096-4528.pgt.260112
• Energy Storage • Previous Articles
Hongsi SHI1, Xinwei SUN2,3, Kai WANG2
Received:2025-05-13
Revised:2025-07-15
Published:2026-02-28
Online:2026-02-12
Contact:
Kai WANG
Supported by:CLC Number:
Hongsi SHI, Xinwei SUN, Kai WANG. State of Health Estimation for Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy[J]. Power Generation Technology, 2026, 47(1): 133-144.
| 温度/℃ | 电池 | RMSE | MAE | R2 |
|---|---|---|---|---|
| 25 | 25C01 | 0.009 2 | 0.007 6 | 0.991 7 |
| 25C02 | 0.036 7 | 0.028 8 | 0.943 8 | |
| 25C03 | 0.011 9 | 0.018 2 | 0.981 9 | |
| 25C04 | 0.027 7 | 0.018 6 | 0.969 5 | |
| 35 | 35C02 | 0.036 8 | 0.039 7 | 0.917 6 |
| 45 | 45C02 | 0.011 1 | 0.008 6 | 0.998 1 |
Tab. 1 SOH prediction evaluation indicators of CNN-BiLSTM-Attention
| 温度/℃ | 电池 | RMSE | MAE | R2 |
|---|---|---|---|---|
| 25 | 25C01 | 0.009 2 | 0.007 6 | 0.991 7 |
| 25C02 | 0.036 7 | 0.028 8 | 0.943 8 | |
| 25C03 | 0.011 9 | 0.018 2 | 0.981 9 | |
| 25C04 | 0.027 7 | 0.018 6 | 0.969 5 | |
| 35 | 35C02 | 0.036 8 | 0.039 7 | 0.917 6 |
| 45 | 45C02 | 0.011 1 | 0.008 6 | 0.998 1 |
| 模型 | 电池 | RMSE | MAE | R2 |
|---|---|---|---|---|
| BiLSTM | 25C01 | 0.074 1 | 0.035 9 | 0.857 6 |
| 25C02 | 0.092 9 | 0.081 1 | 0.776 9 | |
| 25C03 | 0.080 8 | 0.026 3 | 0.735 2 | |
| 25C04 | 0.080 5 | 0.040 1 | 0.718 1 | |
| 35C02 | 0.094 2 | 0.064 4 | 0.790 4 | |
| 45C02 | 0.182 1 | 0.151 4 | 0.512 9 | |
| CNN-BiLSTM | 25C01 | 0.022 8 | 0.015 7 | 0.957 3 |
| 25C02 | 0.043 2 | 0.035 8 | 0.951 6 | |
| 25C03 | 0.021 5 | 0.015 1 | 0.967 0 | |
| 25C04 | 0.065 2 | 0.033 0 | 0.826 4 | |
| 35C02 | 0.056 0 | 0.040 9 | 0.925 7 | |
| 45C02 | 0.039 0 | 0.031 2 | 0.957 6 | |
| CNN-BiLSTM-Attention | 25C01 | 0.009 2 | 0.007 6 | 0.991 7 |
| 25C02 | 0.036 7 | 0.028 8 | 0.965 1 | |
| 25C03 | 0.011 9 | 0.008 2 | 0.989 9 | |
| 25C04 | 0.027 7 | 0.018 7 | 0.969 5 | |
| 35C02 | 0.036 8 | 0.029 7 | 0.967 8 | |
| 45C02 | 0.011 1 | 0.008 6 | 0.998 1 |
Tab. 2 SOH prediction evaluation indicators of each model
| 模型 | 电池 | RMSE | MAE | R2 |
|---|---|---|---|---|
| BiLSTM | 25C01 | 0.074 1 | 0.035 9 | 0.857 6 |
| 25C02 | 0.092 9 | 0.081 1 | 0.776 9 | |
| 25C03 | 0.080 8 | 0.026 3 | 0.735 2 | |
| 25C04 | 0.080 5 | 0.040 1 | 0.718 1 | |
| 35C02 | 0.094 2 | 0.064 4 | 0.790 4 | |
| 45C02 | 0.182 1 | 0.151 4 | 0.512 9 | |
| CNN-BiLSTM | 25C01 | 0.022 8 | 0.015 7 | 0.957 3 |
| 25C02 | 0.043 2 | 0.035 8 | 0.951 6 | |
| 25C03 | 0.021 5 | 0.015 1 | 0.967 0 | |
| 25C04 | 0.065 2 | 0.033 0 | 0.826 4 | |
| 35C02 | 0.056 0 | 0.040 9 | 0.925 7 | |
| 45C02 | 0.039 0 | 0.031 2 | 0.957 6 | |
| CNN-BiLSTM-Attention | 25C01 | 0.009 2 | 0.007 6 | 0.991 7 |
| 25C02 | 0.036 7 | 0.028 8 | 0.965 1 | |
| 25C03 | 0.011 9 | 0.008 2 | 0.989 9 | |
| 25C04 | 0.027 7 | 0.018 7 | 0.969 5 | |
| 35C02 | 0.036 8 | 0.029 7 | 0.967 8 | |
| 45C02 | 0.011 1 | 0.008 6 | 0.998 1 |
| 电池 | 训练集比例/% | RMSE | MAE | R2 |
|---|---|---|---|---|
| 35C01 | 50 | 0.036 8 | 0.031 8 | 0.841 1 |
| 60 | 0.021 5 | 0.018 9 | 0.914 8 | |
| 80 | 0.007 8 | 0.006 9 | 0.960 4 | |
| 45C01 | 50 | 0.026 8 | 0.019 6 | 0.949 9 |
| 60 | 0.018 5 | 0.013 6 | 0.965 6 | |
| 80 | 0.006 6 | 0.005 4 | 0.983 4 |
Tab. 3 SOH prediction evaluation indicators for two batteries
| 电池 | 训练集比例/% | RMSE | MAE | R2 |
|---|---|---|---|---|
| 35C01 | 50 | 0.036 8 | 0.031 8 | 0.841 1 |
| 60 | 0.021 5 | 0.018 9 | 0.914 8 | |
| 80 | 0.007 8 | 0.006 9 | 0.960 4 | |
| 45C01 | 50 | 0.026 8 | 0.019 6 | 0.949 9 |
| 60 | 0.018 5 | 0.013 6 | 0.965 6 | |
| 80 | 0.006 6 | 0.005 4 | 0.983 4 |
| [1] | 李春慧,陈翔,李向阳,等 .新型工业化城市环境能源复合承载力评价:以东莞市环境能源可持续发展为例[J].南方能源建设,2024,11(6):79-87. |
| LI C H, CHEN X, LI X Y,et al .Evaluation of environment and energy compound carrying capacity in newly industrialized cities:a case study of environmental and energy sustainable development of Dongguan[J].Southern Energy Construction,2024,11(6):79-87. | |
| [2] | HU X, FENG F, LIU K,et al .State estimation for advanced battery management:key challenges and future trends[J].Renewable and Sustainable Energy Reviews,2019,114:109334. doi:10.1016/j.rser.2019.109334 |
| [3] | 周原冰,龚乃玮,王皓界,等 .中国电动汽车发展及车网互动对新型储能配置的影响[J].中国电力,2024,57(10):1-11. |
| ZHOU Y B, GONG N W, WANG H J,et al .Study on the Influence of electric vehicle development and the vehicle-grid interaction on new energy storage configuration in China[J].Electric Power,2024,57(10):1-11. | |
| [4] | 贾俊,范炜豪,吕志鹏,等 .用于电动汽车集群并网的直流变压器启动研究[J].发电技术,2023,44(6):875-882. |
| JIA J, FAN W H, LÜ Z P,et al .Research on startup of DC transformer for electric vehicle cluster grid-connection[J].Power Generation Technology,2023,44(6):875-882. | |
| [5] | 张闯,高浪涛,刘素贞,等 .基于超声的锂离子电池微过充循环老化特性[J].电工技术学报,2024,39(24):7965-7978. |
| ZHANG C, GAO L T, LIU S Z,et al .Characterization of slight overcharge cycle aging of lithium-ion batteries based on ultrasonic[J].Transactions of China Electrotechnical Society,2024,39(24):7965-7978. | |
| [6] | ZUO H, ZHANG B, HUANG Z,et al .Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation[J].Energy,2022,238:121854. doi:10.1016/j.energy.2021.121854 |
| [7] | 雷咸道,李杰,张二信 .基于改进TOPSIS-模糊贝叶斯网络的电池SOC和SOH联合估计方法[J].分布式能源,2024,9(5):68-75. |
| LEI X D, LI J, ZHANG E X .Joint estimation of battery SOC and SOH based on improved TOPSIS- fuzzy Bayesian network[J].Distributed Energy,2024,9(5):68-75. | |
| [8] | 赵珈卉,田立亭,程林 .锂离子电池状态估计与剩余寿命预测方法综述[J].发电技术,2023,44(1):1-17. |
| ZHAO J H, TIAN L T, CHENG L .Review on state estimation and remaining useful life prediction methods for lithium-ion battery[J].Power Generation Technology,2023,44(1):1-17. | |
| [9] | 蔡雨思,李泽文,刘萍,等 .基于间接健康特征优化与多模型融合的锂电池SOH-RUL联合预测[J].电工技术学报,2024,39(18):5883-5898. |
| CAI Y S, LI Z W, LIU P,et al .Joint prediction of lithium battery state of health and remaining useful life based on indirect health features optimization and multi-model fusion[J].Transactions of China Electrotechnical Society,2024,39(18):5883-5898. | |
| [10] | 刘旖琦,雷万钧,刘茜,等 .基于双自适应扩展粒子滤波器的锂离子电池状态联合估计[J].电工技术学报,2024,39(2):607-616. |
| LIU Y Q, LEI W J, LIU Q,et al .Joint state estimation of lithium-ion battery based on dual adaptive extended particle filter[J].Transactions of China Electrotechnical Society,2024,39(2):607-616. | |
| [11] | 吴青峰,杨艺涛,刘立群,等 .基于GA-SA-BP神经网络的锂电池健康状态估算方法[J].电力系统保护与控制,2024,52(19):74-84. |
| WU Q F, YANG Y T, LIU L Q,et al .Lithium battery state of health estimation method based on a GA-SA-BP neural network[J].Power System Protection and Control,2024,52(19):74-84. | |
| [12] | 耿萌萌,范茂松,杨凯,等 .基于EIS和神经网络的退役电池SOH快速估计[J].储能科学与技术,2022,11(2):673-678. |
| GENG M M, FAN M S, YANG K,et al .Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network[J].Energy Storage Science and Technology,2022,11(2):673-678. | |
| [13] | 陈媛,段文献,何怡刚,等 .带降噪自编码器和门控递归混合神经网络的电池健康状态估算[J].电工技术学报,2024,39(24):7933-7949. |
| CHEN Y, DUAN W X, HE Y G,et al .State of health estimation of lithium ion battery based on denoising autoencoder-gated recurrent unit[J].Transactions of China Electrotechnical Society,2024,39(24):7933-7949. | |
| [14] | 侯林涛,张彩萍,蔡雪,等 .基于阻抗谱重构技术的电池健康状态快速估计方法[J].全球能源互联网,2024,7(2):145-154. |
| HOU L T, ZHANG C P, CAI X,et al .A fast estimation method of battery state of health based on impedance spectroscopy reconstruction technique[J].Journal of Global Energy Interconnection,2024,7(2):145-154. | |
| [15] | CHANG C, WANG S, JIANG J,et al .Lithium-ion battery state of health estimation based on electrochemical impedance spectroscopy and cuckoo search algorithm optimized Elman neural network[J].Journal of Electrochemical Energy Conversion and Storage,2022,19(3):030912. doi:10.1115/1.4054128 |
| [16] | 张连德 .基于电化学阻抗谱的三元锂离子电池状态估计研究[D].长春:吉林大学,2018. |
| ZHANG L D .Study on state estimation of ternary lithium ion battery based on electrochemical impedance spectroscopy[D].Changchun:Jilin University,2018. | |
| [17] | CHEN M G, WANG Q K, SHEN J N,et al .Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries[J].Energy Storage Science and Technology,2022,11(9):2995-3002. |
| [18] | 李世忠 .基于分数阶建模与滤波的锂离子电池SOC估计方法研究[D].济南:山东大学,2021. |
| LI S Z .Research on SOC estimation methods of lithium-ion batteries based on fractional-order modeling and filtering[D].Jinan:Shandong University,2021. | |
| [19] | XIONG R, TIAN J, MU H,et al .A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries[J].Applied Energy,2017,207:372-383. doi:10.1016/j.apenergy.2017.05.124 |
| [20] | 闫佳乐 .基于EIS的退役锂离子电池SOH估计研究[D].合肥:合肥学院,2023. |
| YAN J L .Study on SOH estimation of retired Li-ion batteries based on EIS[D].Hefei:Hefei University,2023. | |
| [21] | ZHANG Y, TANG Q, ZHANG Y,et al .Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J].Nature Communications,2020,11(1):1706. doi:10.1038/s41467-020-15235-7 |
| [22] | SCHÖNLEBER M, KLOTZ D, IVERS-TIFFÉE E .A method for improving the robustness of linear Kramers-Kronig validity tests[J].Electrochimica Acta,2014,131:20-27. doi:10.1016/j.electacta.2014.01.034 |
| [23] | CUI Z, WANG L, LI Q,et al .A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network[J].International Journal of Energy Research,2022,46(5):5423-5440. doi:10.1002/er.7545 |
| [24] | 李俊卿,苑浩,黄涛,等 .基于PSA引导双分支神经网络特征融合的同步电机故障诊断[J].智慧电力,2024,52(12):51-58. |
| LI J Q, YUAN H, HUANG T,et al .Fault diagnosis of synchronous motor based on PSA guided double branch neural network feature fusion[J].Smart Power,2024,52(12):51-58. | |
| [25] | 明彤彤 .基于Mogrifier LSTM-CNN的锂离子电池荷电状态和健康状态联合估算[D].青岛:青岛大学,2021. |
| MING T T .Joint estimation of state of charge and health of lithium-ion batteries based on Mogrifier LSTM-CNN[D].Qingdao:Qingdao University,2021. | |
| [26] | 李虹,韩雨萌 .基于LSTM-CGAN的多微网数据驱动分布鲁棒协同优化运行策略[J].电力系统保护与控制,2024,52(18):133-148. |
| LI H, HAN Y M .Data-driven distributionally robust collaborative optimization operation strategy for a multi-microgrid based on LSTM-CGAN[J].Power System Protection and Control,2024,52(18):133-148. | |
| [27] | 李英顺,阚宏达,郭占男,等 .基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J].电工技术学报,2024,39(10):3244-3258. |
| LI Y S, KAN H D, GUO Z N,et al .Prediction of remaining useful life of lithium-ion battery based on data preprocessing and VMD-LSTM-GPR[J].Transactions of China Electrotechnical Society,2024,39(10):3244-3258. | |
| [28] | 李德志 .基于电化学阻抗谱的锂离子电池SOH预测研究[D].青岛:青岛大学,2023. |
| LI D Z .Study on SOH prediction of lithium ion batteries based on electrochemical impedance spectroscopy[D].Qingdao:Qingdao University,2023. | |
| [29] | 刘斌,吉春霖,曹丽君,等 .基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测[J].电力系统保护与控制,2024,52(15):167-177. |
| LIU B, JI C L, CAO L J,et al .Prediction of remaining service life of lithium-ion batteries based on complete ensemble empirical mode decomposition with adaptive noise and BiLSTM-Transformer[J].Power System Protection and Control,2024,52(15):167-177. | |
| [30] | 何健明,李梦诗,张禄亮,等 .基于Attention和残差网络的非侵入式负荷监测[J].电测与仪表,2024,61(6):173-180. |
| HE J M, LI M S, ZHANG L L,et al .Non-intrusive load monitoring algorithm based on attention and residual networks[J].Electrical Measurement & Instrumentation,2024,61(6):173-180. | |
| [31] | 崔振华 .基于优化神经网络的锂离子电池SOC估计及低温迁移问题的研究[D].青岛:青岛大学,2023. |
| CUI Z H .Research on SOC estimation and low temperature migration of lithium ion battery based on optimized neural network[D].Qingdao:Qingdao University,2023. | |
| [32] | 娄奇鹤,李荣盛,谭捷,等 .基于卷积神经网络的暂稳极限功率计算[J].中国电力,2024,57(4):211-219. |
| LOU Q H, LI R S, TAN J,et al .Calculation of transient stability limit based on convolutional neural network[J].Electric Power,2024,57(4):211-219. | |
| [33] | 付宽,王洪新,刘杰,等 .基于马尔可夫变迁场和EfficientNet的复合电能质量扰动识别[J].电网与清洁能源,2024,40(4):74-83. |
| FU K, WANG H X, LIU J,et al .Recognition of composite power quality disturbances based on MTF-EfficientNet convolutional neural network[J].Advances of Power System & Hydroelectric Engineering,2024,40(4):74-83. |
| [1] | Zongbo ZHAN, Jiping REN, Liping DING, Zhaolong SUN, Heng DING, Yue CAO. Research on Modeling and Rapid Load Change Control Strategy for High Back- Pressure Extraction-Condensing Combined Heat and Power System [J]. Power Generation Technology, 2025, 46(6): 1074-1084. |
| [2] | Bin LUO, Xiaolong BAI, Tianlei ZANG, Yan HUANG, Lin ZHANG, Meng LI, Xuexia ZHANG, Yonglong JIANG. Review of Research on Wind-Solar-Hydro Complementary Power Generation Systems [J]. Power Generation Technology, 2025, 46(6): 1097-1111. |
| [3] | Xiaowei ZHANG, Zhenxiao YI, Kai WANG. State of Health Estimation of On-Board Lithium-Ion Batteries Using Temporal Convolutional Network Optimized by Improved Self-Adaptive Honey Badger Algorithm [J]. Power Generation Technology, 2025, 46(6): 1154-1163. |
| [4] | Jingshu ZHANG, Qian LIU, Xiaole YAO, Chao XU, Xing JU. Hydrated Salt Composite Phase Change Materials for Passive Thermal Management and Safety Protection of Lithium-Ion Batteries [J]. Power Generation Technology, 2025, 46(6): 1164-1175. |
| [5] | Chao LIU, Liangde LIU, Tiancheng LIAN, Wei ZHAO, Xufei YANG, Guanglin LIU. Parameter Optimization of Geothermal Organic Rankine Cycle Power Generation System Based on Ton of Water Generation [J]. Power Generation Technology, 2025, 46(6): 1223-1230. |
| [6] | Kai SHI, Yifan GONG, Peifeng XU, Yi DU, Yuxin SUN, Mingwei REN. Fault Ride-Through Control Strategy of Virtual Synchronous Generator Based on Joint Control of Power Loop and Current Loop [J]. Power Generation Technology, 2025, 46(6): 1231-1239. |
| [7] | Jianlin LI, Yuchen PENG, Qian WANG, Xiaoxia JIANG, Lei WANG. Research Status and Prospect of Lithium-Ion Battery Modelling [J]. Power Generation Technology, 2025, 46(5): 857-871. |
| [8] | Bo ZOU, Jiandi REN, Daoming XU, Lisheng DENG, Lida LIAO, Junbing XIAO. Recent Developments on the Application of Chloride Molten Salt Heat Storage Technology to New Energy Power Generation [J]. Power Generation Technology, 2025, 46(5): 872-884. |
| [9] | Fugui DONG, Wei ZHANG. Research on Optimization of Operation Strategy for Independent New Energy Storage Power Stations Considering Capacity Value [J]. Power Generation Technology, 2025, 46(5): 897-908. |
| [10] | Kun ZHUANG, Zhonghong WANG, Yifan ZHANG, Wenqian YIN, Maoyun LEI, Jing ZHU, Feng LI, Jilei YE. Economic Model and Key Influencing Factors of Rooftop Distributed Photovoltaic Power Generation in the Whole County [J]. Power Generation Technology, 2025, 46(5): 950-958. |
| [11] | Zonglong LUO, Shilin LIU. Optimal Operation of Residential Microgrids Based on a Robust Model Using Information Gap Decision Theory [J]. Power Generation Technology, 2025, 46(4): 705-714. |
| [12] | Yanan LU, Tao XU, Zenan LIU. Effect of Hydrogen Production System on Sub-Synchronous Oscillation Characteristics of Doubly Fed Induction Generator Systems With Series Compensation [J]. Power Generation Technology, 2025, 46(4): 715-726. |
| [13] | Haoran MA, Zhi YUAN, Weiqing WANG, Ji LI. Research on Economic Scheduling of Active Distribution Networks With Inclusion of Data Center and Energy Storage [J]. Power Generation Technology, 2025, 46(4): 748-757. |
| [14] | Yong SUN, Zihang GAO, Zeyin HOU, Dexin LI, Yao WANG, Haifeng ZHANG, Shuai LU. Gas Network Aggregate Modeling and Identification Method for Integrated Energy System Operation [J]. Power Generation Technology, 2025, 46(2): 274-283. |
| [15] | Yangfan ZHANG, Yilin LI, Lin YE, Xuejiao FU, Zhengyu WANG, Yaohan WANG. Short-Term Wind Power Prediction Method Considering Wind Turbine Operation Status Clustering Under Low-Temperature Conditions [J]. Power Generation Technology, 2025, 46(2): 326-335. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||