Power Generation Technology ›› 2025, Vol. 46 ›› Issue (1): 93-102.DOI: 10.12096/j.2096-4528.pgt.23101
• New Energy • Previous Articles Next Articles
Honghai KUANG, Qian GUO
Received:
2023-08-25
Revised:
2023-12-18
Published:
2025-02-28
Online:
2025-02-27
Supported by:
CLC Number:
Honghai KUANG, Qian GUO. Short-Term Wind Power Prediction Method Based on Multimodal Feature Extraction-Convolutional Neural Network-Long-Short Term Memory Network[J]. Power Generation Technology, 2025, 46(1): 93-102.
类型 | 参数 | 意义 |
---|---|---|
输入变量 | Vi b | 第i天高度b m处的风速(b=10, 30, 50, 70) |
Di b,1 | 第i天高度b m处的风向角度的正弦值(b=10, 30, 50, 70) | |
Di b,2 | 第i天高度b m处的风向角度的余弦值(b=10, 30, 50, 70) | |
Ti | 第i天的温度 | |
Si | 第i天的湿度 | |
Hi | 第i天的压力 | |
输出变 量 | Pi | 第i天的风电功率 |
Tab. 1 Normalized variables
类型 | 参数 | 意义 |
---|---|---|
输入变量 | Vi b | 第i天高度b m处的风速(b=10, 30, 50, 70) |
Di b,1 | 第i天高度b m处的风向角度的正弦值(b=10, 30, 50, 70) | |
Di b,2 | 第i天高度b m处的风向角度的余弦值(b=10, 30, 50, 70) | |
Ti | 第i天的温度 | |
Si | 第i天的湿度 | |
Hi | 第i天的压力 | |
输出变 量 | Pi | 第i天的风电功率 |
变量 | 意义 |
---|---|
第i天高度b m处的最小风速(b=10, 30, 50, 70) | |
第i天高度b m处的最大风速(b=10, 30, 50, 70) | |
第i天高度b m处的风向角度的正弦值的平均值(b =10, 30,50, 70) | |
第i天高度b m处的风向角度的余弦值的平均值(b =10, 30,50, 70) | |
第i天温度的平均值 | |
第i天湿度的平均值 | |
第i天压力的平均值 |
Tab. 2 Basic characteristic variables
变量 | 意义 |
---|---|
第i天高度b m处的最小风速(b=10, 30, 50, 70) | |
第i天高度b m处的最大风速(b=10, 30, 50, 70) | |
第i天高度b m处的风向角度的正弦值的平均值(b =10, 30,50, 70) | |
第i天高度b m处的风向角度的余弦值的平均值(b =10, 30,50, 70) | |
第i天温度的平均值 | |
第i天湿度的平均值 | |
第i天压力的平均值 |
类别 | 模型 | eMSE/MW | eRMSE/MW | eMAE/MW | eMRE/ % |
---|---|---|---|---|---|
1 | CNN-LSTM | 3.626 8 | 1.904 4 | 1.460 4 | 15.312 |
MFE-CNN-LSTM | 3.575 5 | 1.890 9 | 1.338 2 | 11.663 | |
2 | CNN-LSTM | 3.710 1 | 1.926 2 | 1.499 6 | 17.413 |
MFE-CNN-LSTM | 3.651 9 | 1.911 0 | 1.479 8 | 16.747 | |
3 | CNN-LSTM | 6.500 5 | 2.549 6 | 1.732 2 | 20.924 |
MFE-CNN-LSTM | 6.389 6 | 2.527 8 | 1.641 9 | 17.332 |
Tab. 3 Multi-feature extraction ablation errors
类别 | 模型 | eMSE/MW | eRMSE/MW | eMAE/MW | eMRE/ % |
---|---|---|---|---|---|
1 | CNN-LSTM | 3.626 8 | 1.904 4 | 1.460 4 | 15.312 |
MFE-CNN-LSTM | 3.575 5 | 1.890 9 | 1.338 2 | 11.663 | |
2 | CNN-LSTM | 3.710 1 | 1.926 2 | 1.499 6 | 17.413 |
MFE-CNN-LSTM | 3.651 9 | 1.911 0 | 1.479 8 | 16.747 | |
3 | CNN-LSTM | 6.500 5 | 2.549 6 | 1.732 2 | 20.924 |
MFE-CNN-LSTM | 6.389 6 | 2.527 8 | 1.641 9 | 17.332 |
类别 | 模型 | eMSE/MW | eRMSE/MW | eMAE/MW | eMRE/% |
---|---|---|---|---|---|
1 | MFE-LSTM | 3.692 3 | 1.921 5 | 1.415 1 | 13.806 |
MFE-CNN-LSTM | 3.575 5 | 1.890 9 | 1.338 2 | 11.663 | |
2 | MFE-LSTM | 3.869 1 | 1.967 0 | 1.466 4 | 13.951 |
MFE-CNN-LSTM | 3.651 9 | 1.911 0 | 1.479 8 | 16.747 | |
3 | MFE-LSTM | 6.865 4 | 2.620 2 | 1.713 4 | 21.924 |
MFE-CNN-LSTM | 6.389 6 | 2.527 8 | 1.641 9 | 17.332 |
Tab. 4 CNN network ablation errors
类别 | 模型 | eMSE/MW | eRMSE/MW | eMAE/MW | eMRE/% |
---|---|---|---|---|---|
1 | MFE-LSTM | 3.692 3 | 1.921 5 | 1.415 1 | 13.806 |
MFE-CNN-LSTM | 3.575 5 | 1.890 9 | 1.338 2 | 11.663 | |
2 | MFE-LSTM | 3.869 1 | 1.967 0 | 1.466 4 | 13.951 |
MFE-CNN-LSTM | 3.651 9 | 1.911 0 | 1.479 8 | 16.747 | |
3 | MFE-LSTM | 6.865 4 | 2.620 2 | 1.713 4 | 21.924 |
MFE-CNN-LSTM | 6.389 6 | 2.527 8 | 1.641 9 | 17.332 |
类别 | 模型 | eMSE/ MW | eRMSE/ MW | eMAE/ MW | eMRE/ % |
---|---|---|---|---|---|
1 | ARIMA | 5.043 8 | 2.245 8 | 1.711 2 | 17.350 |
FRNN | 3.925 9 | 1.981 4 | 1.550 0 | 16.979 | |
LSTM | 3.754 9 | 1.937 8 | 1.465 3 | 15.784 | |
CVMD-SE-MCC-LSTM | 3.672 5 | 1.916 4 | 1.500 0 | 13.154 | |
MFE-CNN-LSTM | 3.575 5 | 1.890 9 | 1.338 2 | 11.663 | |
2 | ARIMA | 4.405 7 | 2.099 0 | 1.613 6 | 13.061 |
FRNN | 3.856 1 | 1.963 7 | 1.575 9 | 17.328 | |
LSTM | 3.952 9 | 1.988 2 | 1.579 7 | 16.878 | |
CVMD-SE-MCC-LSTM | 3.787 2 | 1.946 1 | 1.494 7 | 12.128 | |
MFE-CNN-LSTM | 3.651 9 | 1.911 0 | 1.479 8 | 16.747 | |
3 | ARIMA | 8.418 5 | 2.901 5 | 1.956 1 | 22.777 |
FRNN | 7.360 8 | 2.713 1 | 1.883 4 | 25.111 | |
LSTM | 7.012 9 | 2.648 2 | 1.812 9 | 21.634 | |
CVMD-SE-MCC-LSTM | 6.662 9 | 2.581 3 | 1.955 3 | 23.920 | |
MFE-CNN-LSTM | 6.389 6 | 2.527 8 | 1.641 9 | 17.332 |
Tab. 5 Comparison of errors of different wind power prediction models
类别 | 模型 | eMSE/ MW | eRMSE/ MW | eMAE/ MW | eMRE/ % |
---|---|---|---|---|---|
1 | ARIMA | 5.043 8 | 2.245 8 | 1.711 2 | 17.350 |
FRNN | 3.925 9 | 1.981 4 | 1.550 0 | 16.979 | |
LSTM | 3.754 9 | 1.937 8 | 1.465 3 | 15.784 | |
CVMD-SE-MCC-LSTM | 3.672 5 | 1.916 4 | 1.500 0 | 13.154 | |
MFE-CNN-LSTM | 3.575 5 | 1.890 9 | 1.338 2 | 11.663 | |
2 | ARIMA | 4.405 7 | 2.099 0 | 1.613 6 | 13.061 |
FRNN | 3.856 1 | 1.963 7 | 1.575 9 | 17.328 | |
LSTM | 3.952 9 | 1.988 2 | 1.579 7 | 16.878 | |
CVMD-SE-MCC-LSTM | 3.787 2 | 1.946 1 | 1.494 7 | 12.128 | |
MFE-CNN-LSTM | 3.651 9 | 1.911 0 | 1.479 8 | 16.747 | |
3 | ARIMA | 8.418 5 | 2.901 5 | 1.956 1 | 22.777 |
FRNN | 7.360 8 | 2.713 1 | 1.883 4 | 25.111 | |
LSTM | 7.012 9 | 2.648 2 | 1.812 9 | 21.634 | |
CVMD-SE-MCC-LSTM | 6.662 9 | 2.581 3 | 1.955 3 | 23.920 | |
MFE-CNN-LSTM | 6.389 6 | 2.527 8 | 1.641 9 | 17.332 |
1 | 张丽英,叶廷路,辛耀中,等 .大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9. |
ZHANG L Y, YE T L, XIN Y Z,et al .Problems and measures of power grid accommodating large scale wind power[J].Proceedings of the CSEE,2010,30(25):1-9. | |
2 | 雷旭,马鹏飞,宋智帅,等 .计及风电预测误差的柔性负荷日内调度模型[J].发电技术,2022,43(3):485-491. doi:10.12096/j.2096-4528.pgt.20083 |
LEI X, MA P F, SONG Z S,et al .A flexible intraday load dispatch model considering wind power prediction errors[J].Power Generation Technology,2022,43(3):485-491. doi:10.12096/j.2096-4528.pgt.20083 | |
3 | 叶瑞丽,郭志忠,刘瑞叶,等 .基于风电功率预测误差分析的风电场储能容量优化方法[J].电力系统自动化,2014,38(16):28-34. |
YE R L, GUO Z Z, LIU R Y,et al .A method for designing optimal energy storage system based on analysis of wind power forecast error[J].Automation of Electric Power Systems,2014,38(16):28-34. | |
4 | 王伟胜,王铮,董存,等 .中国短期风电功率预测技术现状与误差分析[J].电力系统自动化,2021,45(1):17-27. doi:10.7500/AEPS20200324003 |
WANG W S, WANG Z, DONG C,et al .Status and error analysis of short-term forecasting technology of wind power in China[J].Automation of Electric Power Systems,2021,45(1):17-27. doi:10.7500/AEPS20200324003 | |
5 | 王绍敏,王守相,赵倩宇,等 .基于频域分解和精度加权集成的分布式风电功率预测方法[J].电力建设,2023,44(5):84-93. |
WANG S M, WANG S X, ZHAO Q Y,et al .Distributed wind power forecasting method based on frequency domain decomposition and precision-weighted ensemble[J].Electric Power Construction,2023,44(5):84-93. | |
6 | 庞博文,丁月明,杜善慧,等 .基于CEEMDAN-BO-LSTNet的风电出力短期预测[J].电测与仪表,2023,60(9):109-116. |
PANG B W, DING Y M, DU S H,et al .Short-term forecasting of wind power output based on CEEMDAN-BO-LSTNet[J].Electrical Measurement & Instrumentation,2023,60(9):109-116. | |
7 | 蔡昌春,范靖浩,李源佳,等 .基于TPA-MBLSTM模型的超短期风电功率预测[J].电力科学与技术学报,2024,39(1):47-56. |
CAI C C, FAN J H, LI Y J,et al .Ultra-short-term wind power prediction based on TPA-MBLSTM model[J].Journal of Electric Power Science and Technology,2024,39(1):47-56. | |
8 | 苏向敬,朱敏轩,宇海波,等 .基于频谱注意力和无交叉联合分位数回归的海上风电功率超短期概率预测[J].电力系统保护与控制,2024,52(21):103-116. |
SU X J, ZHU M X, YU H B,et al .Ultra-short-term probability prediction of offshore wind power based on spectrum attention and cross-free joint quantile regression[J].Power System Protection and Control,2024,52(21):103-116. | |
9 | 胡宇晗,朱利鹏,李佳勇,等 .融合深度误差反馈学习和注意力机制的短期风电功率预测[J].电力系统保护与控制,2024,52(4):100-108. |
HU Y H, ZHU L P, LI J Y,et al .Short-term wind power forecasting based on deep error feedback learning and attention mechanism[J].Power System Protection and Control,2024,52(4):100-108. | |
10 | LIU H, CHEN C .Data processing strategies in wind energy forecasting models and applications:a comprehensive review[J].Applied Energy,2019,249:392-408. doi:10.1016/j.apenergy.2019.04.188 |
11 | 杨国华,祁鑫,贾睿,等 .基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J].中国电力,2024,57(2):55-61. |
YANG G H, QI X, JIA R,et al .Short-term wind power forecast based on CNN&LSTM-GRU model integrated with CEEMD-SE algorithm[J].Electric Power,2024,57(2):55-61. | |
12 | 叶林,裴铭,路朋,等 .基于天气分型的短期光伏功率组合预测方法[J].电力系统自动化,2021,45(1):44-54. doi:10.7500/AEPS20200613003 |
YE L, PEI M, LU P,et al .Combination forecasting method of short-term photovoltaic power based on weather classification[J].Automation of Electric Power Systems,2021,45(1):44-54. doi:10.7500/AEPS20200613003 | |
13 | 张永蕊,阎洁,林爱美,等 .多点数值天气预报风速和辐照度集中式修正方法研究[J].发电技术,2022,43(2):278-286. doi:10.12096/j.2096-4528.pgt.22005 |
ZHANG Y R, YAN J, LIN A M,et al .Integrated correction method of multi-point numerical weather prediction wind speed and irradiance[J].Power Generation Technology,2022,43(2):278-286. doi:10.12096/j.2096-4528.pgt.22005 | |
14 | 任志玲,赵博雅 .基于CNN预测的电厂热能联合循环控制研究[J].控制工程,2019,26(8):1544-1549. |
REN Z L, ZHAO B Y .Research on power plant thermal energy combined cycle control based on CNN prediction[J].Control Engineering of China,2019,26(8):1544-1549. | |
15 | 赵申剑,黎彧君,符天凡,等 .深度学习[M].北京:人民邮电出版社,2017. |
ZHAO S J, LI Y J, FU T F,et al .Deep learning[M].Beijing:The People’s Posts and Telecommunications Press,2017. | |
16 | 董光德,李道明,陈咏涛,等 .基于粒子群优化与卷积神经网络的电能质量扰动分类方法[J].发电技术,2023,44(1):136-142. doi:10.12096/j.2096-4528.pgt.22004 |
DONG G D, LI D M, CHEN Y T,et al .Power quality disturbance classification method based on particle swarm optimization and convolutional neural network[J].Power Generation Technology,2023,44(1):136-142. doi:10.12096/j.2096-4528.pgt.22004 | |
17 | 于昕妍 .微电网超短期负荷预测研究[D].无锡:江南大学,2018. |
YU X Y .Research on ultra-short-term load forecasting of microgrid[D].Wuxi:Jiangnan University,2018. | |
18 | WANG K, QI X, LIU H,et al .Deep belief network based k-means cluster approach for short-term wind power forecasting[J].Energy,2018,165:840-852. doi:10.1016/j.energy.2018.09.118 |
19 | 徐映梅,陈尧 .季节ARIMA模型与LSTM神经网络预测的比较[J].统计与决策,2021,37(2):46-50. |
XU Y M, CHEN Y .Comparison between seasonal ARIMA model and LSTM neural network forecast[J].Statistics & Decision,2021,37(2):46-50. | |
20 | 杨健,柳玉,黄坤鹏,等 .考虑发电工况和站内损耗的风电场可用发电功率估算方法[J].发电技术,2023,44(2):235-243. doi:10.12096/j.2096-4528.pgt.21135 |
YANG J, LIU Y, HUANG K P,et al .A method for estimating available power of wind farms by considering the power generation conditions and station losses[J].Power Generation Technology,2023,44(2):235-243. doi:10.12096/j.2096-4528.pgt.21135 | |
21 | BOX G E P, COX D R .An analysis of transformations[J].Journal of the Royal Statistical Society:Series B,1964,26(2):211-243. doi:10.1111/j.2517-6161.1964.tb00553.x |
22 | SALEH A E, MOUSTAFA M S, ABO-AL-EZ K M,et al .A hybrid neuro-fuzzy power prediction system for wind energy generation[J].International Journal of Electrical Power & Energy Systems,2016,74:384-395. doi:10.1016/j.ijepes.2015.07.039 |
23 | ROSENSTEIN M T, COLLINS J J, DE LUCA C J .A practical method for calculating largest Lyapunov exponents from small data sets[J].Physica D:Nonlinear Phenomena,1993,65(1/2):117-134. doi:10.1016/0167-2789(93)90009-p |
24 | WANG L, TIAN T, XU H,et al .Short-term power load forecasting model based on t-SNE dimension reduction visualization analysis,VMD and LSSVM improved with chaotic sparrow search algorithm optimization[J].Journal of Electrical Engineering & Technology,2022,17(5):2675-2691. doi:10.1007/s42835-022-01101-7 |
25 | 彭晨宇,陈宁,高丙团 .结合多重聚类和分层聚类的超短期风电功率预测方法[J].电力系统自动化,2020,44(2):173-180. |
PENG C Y, CHEN N, GAO B T .Ultra-short-term wind power forecasting method combining multiple clustering and hierarchical clustering[J].Automation of Electric Power Systems,2020,44(2):173-180. | |
26 | KLAMBAUER G, UNTERTHINER T, MAYR A,et al .Self-normalizing neural networks[C]//Advances in Neural Information Processing Systems.Long Beach,USA:MIT Press,2017:971-980. doi:10.1016/j.toxlet.2017.07.175 |
27 | 赵卫东,董亮 .机器学习[M].北京:人民邮电出版社,2018. doi:10.1007/s10586-017-0843-2 |
ZHAO W D, DONG L .Machine learning[M].Beijing:Posts & Telecom Press,2018. doi:10.1007/s10586-017-0843-2 |
[1] | Zhong LIU, Zehua ZHOU, Shuyun ZOU, Zhen LIU, Shuaicheng QIAO. Cavitation State Identification Method of Hydraulic Turbine Based on Knowledge Distillation and Convolutional Neural Network [J]. Power Generation Technology, 2025, 46(1): 161-170. |
[2] | Zhan LIU, Yanyang BAO, Dazi LI. Fault Diagnosis Method of Wind Turbines Based on Wide Deep Convolutional Neural Network With Resampling and Principal Component Analysis [J]. Power Generation Technology, 2023, 44(6): 824-832. |
[3] | Zhengling YANG, Ruxue WAGN, Jian QIAO, Xi ZHANG, Zhao YANG, Jun ZHANG. Analysis of the Influence of Atmospheric Pressure Difference on Spatial Correlation Prediction of Wind Speed [J]. Power Generation Technology, 2020, 41(6): 617-624. |
[4] | Xincheng JIN,Xiuyuan YANG. Data Pre-processing Method Based on Distorted Data Noise Reduction and Its Application in Wind Power Prediction [J]. Power Generation Technology, 2020, 41(4): 447-451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||