Power Generation Technology ›› 2025, Vol. 46 ›› Issue (5): 996-1004.DOI: 10.12096/j.2096-4528.pgt.24008
• Power Generation and Environmental Protection • Previous Articles Next Articles
Wengen ZENG, Donglin CHEN, Mingzhu TANG, Shuqi WANG, Zhangmao HU
Received:2024-06-28
Revised:2024-10-02
Published:2025-10-31
Online:2025-10-23
Supported by:CLC Number:
Wengen ZENG, Donglin CHEN, Mingzhu TANG, Shuqi WANG, Zhangmao HU. Prediction of NO x Concentration at Inlet Section of SCR Denitrification Reactor Based on Bidirectional Long Short-Term Memory Network and Least Squares Support Vector Machine Model[J]. Power Generation Technology, 2025, 46(5): 996-1004.
| 序号 | 特征 |
|---|---|
| 1 | 机组负荷(有功功率) |
| 2 | 一次风机出口流量 |
| 3 | 空预器出口二次风量 |
| 4 | 锅炉总风量 |
| 5 | 锅炉含氧量 |
| 6 | 锅炉水煤比 |
| 7 | 给煤机A瞬时煤量 |
| 8 | 给煤机B瞬时煤量 |
| 9 | 给煤机C瞬时煤量 |
| 10 | 给煤机D瞬时煤量 |
| 11 | 磨煤机A分离器出口风粉温度 |
| 12 | 磨煤机B分离器出口风粉温度 |
| 13 | 磨煤机C分离器出口风粉温度 |
| 14 | 磨煤机D分离器出口风粉温度 |
| 15 | SCR反应器进口NO x 浓度 |
Tab. 1 Preliminary collected features for NO x concentration prediction model
| 序号 | 特征 |
|---|---|
| 1 | 机组负荷(有功功率) |
| 2 | 一次风机出口流量 |
| 3 | 空预器出口二次风量 |
| 4 | 锅炉总风量 |
| 5 | 锅炉含氧量 |
| 6 | 锅炉水煤比 |
| 7 | 给煤机A瞬时煤量 |
| 8 | 给煤机B瞬时煤量 |
| 9 | 给煤机C瞬时煤量 |
| 10 | 给煤机D瞬时煤量 |
| 11 | 磨煤机A分离器出口风粉温度 |
| 12 | 磨煤机B分离器出口风粉温度 |
| 13 | 磨煤机C分离器出口风粉温度 |
| 14 | 磨煤机D分离器出口风粉温度 |
| 15 | SCR反应器进口NO x 浓度 |
| 序号 | 变量 |
|---|---|
| 1 | 机组负荷(有功功率) |
| 2 | 一次风机出口流量 |
| 3 | 锅炉水煤比 |
| 4 | 给煤机A瞬时煤量 |
| 5 | 给煤机B瞬时煤量 |
| 6 | 给煤机C瞬时煤量 |
| 7 | 给煤机D瞬时煤量 |
| 8 | 磨煤机A分离器出口风粉温度 |
| 9 | 磨煤机B分离器出口风粉温度 |
| 10 | 磨煤机C分离器出口风粉温度 |
| 11 | 磨煤机D分离器出口风粉温度 |
Tab. 2 Predictor variables of NO x concentration prediction model
| 序号 | 变量 |
|---|---|
| 1 | 机组负荷(有功功率) |
| 2 | 一次风机出口流量 |
| 3 | 锅炉水煤比 |
| 4 | 给煤机A瞬时煤量 |
| 5 | 给煤机B瞬时煤量 |
| 6 | 给煤机C瞬时煤量 |
| 7 | 给煤机D瞬时煤量 |
| 8 | 磨煤机A分离器出口风粉温度 |
| 9 | 磨煤机B分离器出口风粉温度 |
| 10 | 磨煤机C分离器出口风粉温度 |
| 11 | 磨煤机D分离器出口风粉温度 |
| 模型 | RE/(mg/m3) | ME/% | R |
|---|---|---|---|
| BiLSTM | 18.401 | 6.021 | 0.910 |
| BiLSTM-LSSVM | 10.532 | 3.755 | 0.941 |
Tab. 3 Comparison table of training metrics for predictive models
| 模型 | RE/(mg/m3) | ME/% | R |
|---|---|---|---|
| BiLSTM | 18.401 | 6.021 | 0.910 |
| BiLSTM-LSSVM | 10.532 | 3.755 | 0.941 |
| 模型 | RE/(mg/m3) | ME/% | R |
|---|---|---|---|
| LSSVM | 21.533 | 8.353 | 0.884 |
| LSTM | 17.804 | 6.103 | 0.915 |
| BiLSTM | 16.032 | 5.592 | 0.924 |
| BiLSTM-LSSVM | 10.256 | 3.926 | 0.964 |
Tab. 4 Comparison of prediction performance metrics of each prediction model for new data
| 模型 | RE/(mg/m3) | ME/% | R |
|---|---|---|---|
| LSSVM | 21.533 | 8.353 | 0.884 |
| LSTM | 17.804 | 6.103 | 0.915 |
| BiLSTM | 16.032 | 5.592 | 0.924 |
| BiLSTM-LSSVM | 10.256 | 3.926 | 0.964 |
| 参数 | 最大值 | 最小值 | 平均值 | 标准差 |
|---|---|---|---|---|
| 脱硝效率/% | 92.525 | 76.886 | 85.771 | 3.520 |
| 氨逃逸率/(×10-6) | 0.599 | 0.598 | 0.599 | 0.000 265 |
| 出口NO x 质量浓度/(mg/m3) | 47.433 | 30.297 | 38.650 | 3.236 |
Tab. 5 Parameters for ammonia injection in SCR denitrification system (side A)
| 参数 | 最大值 | 最小值 | 平均值 | 标准差 |
|---|---|---|---|---|
| 脱硝效率/% | 92.525 | 76.886 | 85.771 | 3.520 |
| 氨逃逸率/(×10-6) | 0.599 | 0.598 | 0.599 | 0.000 265 |
| 出口NO x 质量浓度/(mg/m3) | 47.433 | 30.297 | 38.650 | 3.236 |
| [1] | 罗志刚,何成兵,孟浩然,等 .燃煤电厂SCR脱硝系统精准控氨优化方法研究[J].发电技术,2023,44(4):525-533. |
| LUO Z G, HE C B, MENG H R,et al .Research on optimization method of precise ammonia injection in SCR de-NO x system of coal-fired power plant[J].Power Generation Technology,2023,44(4):525-533. | |
| [2] | 袁晓君,马青,李健,等 .基于数据驱动的SCR脱硝系统控制优化[J].电力科技与环保,2023,39(3):227-234. |
| YUAN X J, MA Q, LI J,et al .Data driven optimal control of SCR denitration system[J].Electric Power Technology and Environmental Protection,2023,39(3):227-234. | |
| [3] | 董威,林子杰,王雅昀 .基于CIFE-FOA-DELM的SCR脱硝入口NO x 浓度预测方法研究[J].电力科技与环保,2024,40(3):313-320. |
| DONG W, LIN Z J, WANG Y Y .A CIFE-FOA-DELM method for predicting NO x concentration at the inlet of SCR denitration system[J].Electric Power Technology and Environmental Protection,2024,40(3):313-320. | |
| [4] | ADAMS D, OH D H, KIM D W,et al .Prediction of SO x -NO x emission from a coal-fired CFB power plant with machine learning:plant data learned by deep neural network and least square support vector machine[J].Journal of Cleaner Production,2020,270:122310. doi:10.1016/j.jclepro.2020.122310 |
| [5] | AHMED F, CHO H J, KIM J K,et al .A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant[J].Korean Journal of Chemical Engineering,2015,32(6):1029-1036. doi:10.1007/s11814-014-0301-2 |
| [6] | LV Y, LIU J Z, YANG T T,et al .A novel least squares support vector machine ensemble model for NO x emission prediction of a coal-fired boiler[J].Energy,2013,55:319-329. doi:10.1016/j.energy.2013.02.062 |
| [7] | YANG T T, MA K F, LV Y,et al .Real-time dynamic prediction model of NO x emission of coal-fired boilers under variable load conditions[J].Fuel,2020,274:117811. doi:10.1016/j.fuel.2020.117811 |
| [8] | ZHAI Y J, DING X D, JIN X Z,et al .Adaptive LSSVM based iterative prediction method for NO x concentration prediction in coal-fired power plant considering system delay[J].Applied Soft Computing,2020,89:106070. doi:10.1016/j.asoc.2020.106070 |
| [9] | KANG J J, NIU Y G, HU B,et al .Dynamic modeling of SCR denitration systems in coal-fired power plants based on a bi-directional long short-term memory method[J].Process Safety and Environmental Protection,2021,148:867-878. doi:10.1016/j.psep.2021.02.009 |
| [10] | QIAO J F .A novel online modeling for NO x generation prediction in coal-fired boiler[J].Science of the Total Environment,2022,847:157542. doi:10.1016/j.scitotenv.2022.157542 |
| [11] | 张文祥,徐文韬,黄亚继,等 .基于数据驱动660 MW循环流化床锅炉多目标燃烧优化[J].电力科技与环保,2024,40(2):97-107. |
| ZHANG W X, XU W T, HUANG Y J,et al .Multi-objective combustion optimization for 660 MW circulating fluidized bed boiler based on data-driven approach[J].Electric Power Technology and Environmental Protection,2024,40(2):97-107. | |
| [12] | YANG G T, WANG Y N, LI X L .Prediction of the NO x emissions from thermal power plant using long-short term memory neural network[J].Energy,2020,192:116597. doi:10.1016/j.energy.2019.116597 |
| [13] | 黄友华,马善为,刘吉,等 .燃气轮机烟气SCR脱硝系统优化设计与工程应用[J].发电技术,2021,42(3):350-356. doi:10.12096/j.2096-4528.pgt.21029 |
| HUANG Y H, MA S W, LIU J,et al .Optimization design and engineering application of gas turbine SCR denitrification system[J].Power Generation Technology,2021,42(3):350-356. doi:10.12096/j.2096-4528.pgt.21029 | |
| [14] | 李存文,王在华,陈涛,等 .基于燃煤电站运行数据的烟气脱硫系统性能预测研究[J].发电技术,2022,43(4):673-678. doi:10.12096/j.2096-4528.pgt.20009 |
| LI C W, WANG Z H, CHEN T,et al .Research on performance prediction of flue gas desulfurization system based on operation data of coal-fired power station[J].Power Generation Technology,2022,43(4):673-678. doi:10.12096/j.2096-4528.pgt.20009 | |
| [15] | 唐振浩,王世魁,曹生现,等 .基于混合数据驱动算法的SCR氮氧化物排放量动态预测模型[J].中国电机工程学报,2022,42(9):3295-3307. |
| TANG Z H, WANG S K, CAO S X,et al .Dynamic prediction model for NO x emission of SCR system based on hybrid data-driven algorithms[J].Proceedings of the CSEE,2022,42(9):3295-3307. | |
| [16] | 谭增强,李元昊,牛拥军,等 .火电厂NO x 的均布优化及预测研究[J].环境工程,2023,41(S1):349-353. |
| TAN Z Q, LI Y H, NIU Y J,et al .Research on uniform distribution optimization and prediction of NO x in thermal power plants[J].Environmental Engineering,2023,41(S1):349-353. | |
| [17] | 石翠翠,刘媛华 .基于组合模型的燃气轮机NO x 排放影响因素研究[J].计算机系统应用,2022,31(6):354-360. |
| SHI C C, LIU Y H .Research on influencing factors of NO x emission from gas turbine based on combined model[J].Computer Systems and Applications,2022,31(6):354-360. | |
| [18] | 王祖林,韩硕,康俊杰,等 .基于双向深度学习的电站锅炉SCR脱硝系统入口NO x 浓度预测[J].自动化与仪表,2021,36(1):82-87. |
| WANG Z L, HAN S, KANG J J,et al .Pridiction of NO x concentration at the inlet of SCR denitration system of utility boiler based on bidirectional deep learning[J].Automation & Instrumentation,2021,36(1):82-87. | |
| [19] | 温鑫,钱玉良,彭道刚,等 .基于深度双向LSTM的SCR系统NO x 排放预测模型研究[J].热能动力工程,2020,35(10):57-64. |
| WEN X, QIAN Y L, PENG D G,et al .NO x emission prediction model of SCR system based on deep bidirectional LSTM[J].Journal of Engineering for Thermal Energy and Power,2020,35(10):57-64. |
| [1] | Zhuo LIU, Donglin CHEN, Shuqi WANG, Yijiang YANG, Youyang YAN, Zhan YANG. Optimization Method of Flow Field for Alleviating Clogging of Mist Eliminator in Desulfurization Tower [J]. Power Generation Technology, 2024, 45(6): 1087-1094. |
| [2] | Gengsheng LIU, Jianyong ZHANG, Quan SUN, Shan CAO, Anqi GONG, Lin JIANG, Yongsheng ZHANG. Study on the Removal of Heavy Metals From Wastewater by Ultra High Lime With Aluminum Precipitation Coupling Activated Carbon Adsorption in 300 MW Coal-Fired Units [J]. Power Generation Technology, 2024, 45(5): 959-968. |
| [3] | Guoqin ZHAO, Maowei LAN, Yang LI, Yuanxiang ZHOU, Zhengwei JIANG, Yunhua GAN. Study on Optimization of Prediction Model of Flue Gas Oxygen Content in Thermal Power Plant Based on Least Squares Support Vector Machine [J]. Power Generation Technology, 2023, 44(4): 534-542. |
| [4] | Jiaqi PENG, Haiping XIAO, Zhuyu DONG, Baomin SUN, Ling BAI, Zhichun SUN. Data-driven NO x Stability Evaluation [J]. Power Generation Technology, 2023, 44(2): 163-170. |
| [5] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
| [6] | Xiufeng YAN, Ke ZONG, Xiunian HE, Lin GAO, Bin QIN, Mingkun WANG, Wentao HUI. Research on Steam Temperature Control Strategy in Peak Regulation of 1 000 MW Coal Power Unit [J]. Power Generation Technology, 2022, 43(3): 518-522. |
| [7] | Qianwei FENG, Renhan ZHU, Sida XU, Bo LIU, Yang ZHANG, Fengji WANG, Yue ZHU. Performance Evaluation and Analysis of Key Parameters of SCR Ultra-low Emission for 1 000 MW Coal-fired Unit [J]. Power Generation Technology, 2022, 43(1): 168-174. |
| [8] | Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine [J]. Power Generation Technology, 2022, 43(1): 139-146. |
| [9] | Jing WANG, Jinfu YANG, Liqiang DUAN, Liguo TIAN, Yutian JING, Ming YANG. Optimal Design of Steam Turbine System for Advanced Ultra-supercritical Double Reheat Coal-fired Units [J]. Power Generation Technology, 2021, 42(4): 480-488. |
| [10] | Youhua HUANG, Shanwei MA, Ji LIU, Zhenghua WU. Optimization Design and Engineering Application of Gas Turbine SCR Denitrification System [J]. Power Generation Technology, 2021, 42(3): 350-356. |
| [11] | Jinlong SUN. Optimization Study of Denitrification System for 330 MW Coal-fired Thermal Power Unit [J]. Power Generation Technology, 2019, 40(6): 570-579. |
| [12] | YE Wei-ping, QIU Guo-ming, DU Zhen, WEI Hong-ge, ZHANG Yang, ZHU Yue. Analysis for the Technology Roadmap of Flue Gas Ultra Low Emission in CFB [J]. Power Generation Technology, 2017, 38(2): 34-37,41. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||