Power Generation Technology ›› 2025, Vol. 46 ›› Issue (4): 839-848.DOI: 10.12096/j.2096-4528.pgt.24033
• Power Generation and Environmental Protection • Previous Articles Next Articles
Wenjing WANG1, Yixuan HAN1, Jibin LI2, Xiaoxu SHEN2, Zhaoyi HUO1, Lianghua FENG1
Received:
2024-04-04
Revised:
2024-07-01
Published:
2025-08-31
Online:
2025-08-21
Supported by:
CLC Number:
Wenjing WANG, Yixuan HAN, Jibin LI, Xiaoxu SHEN, Zhaoyi HUO, Lianghua FENG. Multi-Objective Optimization Analysis of Gas-Steam Combined Cycle Power Generation Systems[J]. Power Generation Technology, 2025, 46(4): 839-848.
名称 | 参数 | 数值 |
---|---|---|
燃气轮机 | 空气绝热指数γa | 1.4 |
燃气绝热指数γk | 1.33 | |
空压机效率ηac/% | 87 | |
燃烧室效率ηcc/% | 99.5 | |
透平效率ηt/% | 90 | |
叶片温度Tb/℃ | 860 | |
燃料流量vf /(m³/s) | 20.44 | |
燃料热值hu/(kJ/m³) | 37 355 | |
甲烷体积分数/% | 91.73 | |
乙烷体积分数/% | 6.17 | |
氮气体积分数/% | 1.44 | |
二氧化碳体积分数/% | 0.66 | |
余热锅炉 | 给水温度tc/℃ | 28.96 |
接近点温差ΔT/℃ | 8 | |
夹点温差Δt/℃ | 8 | |
省煤器传热系数uec/[W/(m2⋅℃)] | 42.6 | |
蒸发器传热系数uev/[W/(m2⋅℃)] | 43.7 | |
过热器传热系数ush/[W/(m2⋅℃)] | 50 | |
汽轮机 | 低压汽轮机效率ηlst/% | 92 |
中压汽轮机效率ηmst/% | 91 | |
高压汽轮机效率ηhst/% | 90 | |
冷凝器 | 工作压力p | 0.004 |
价格系数 | 省煤器cec/(美元/m2) | 45.7 |
蒸发器cev/(美元/m2) | 34.9 | |
过热器csh/(美元/m2) | 96.2 | |
电力cpower/[美元/(kW⋅h)] | 0.076 | |
冷却水ccw/(美元/m3) | 0.02 |
Tab. 1 Calculation parameters
名称 | 参数 | 数值 |
---|---|---|
燃气轮机 | 空气绝热指数γa | 1.4 |
燃气绝热指数γk | 1.33 | |
空压机效率ηac/% | 87 | |
燃烧室效率ηcc/% | 99.5 | |
透平效率ηt/% | 90 | |
叶片温度Tb/℃ | 860 | |
燃料流量vf /(m³/s) | 20.44 | |
燃料热值hu/(kJ/m³) | 37 355 | |
甲烷体积分数/% | 91.73 | |
乙烷体积分数/% | 6.17 | |
氮气体积分数/% | 1.44 | |
二氧化碳体积分数/% | 0.66 | |
余热锅炉 | 给水温度tc/℃ | 28.96 |
接近点温差ΔT/℃ | 8 | |
夹点温差Δt/℃ | 8 | |
省煤器传热系数uec/[W/(m2⋅℃)] | 42.6 | |
蒸发器传热系数uev/[W/(m2⋅℃)] | 43.7 | |
过热器传热系数ush/[W/(m2⋅℃)] | 50 | |
汽轮机 | 低压汽轮机效率ηlst/% | 92 |
中压汽轮机效率ηmst/% | 91 | |
高压汽轮机效率ηhst/% | 90 | |
冷凝器 | 工作压力p | 0.004 |
价格系数 | 省煤器cec/(美元/m2) | 45.7 |
蒸发器cev/(美元/m2) | 34.9 | |
过热器csh/(美元/m2) | 96.2 | |
电力cpower/[美元/(kW⋅h)] | 0.076 | |
冷却水ccw/(美元/m3) | 0.02 |
[1] | 施瑶璐,张振文,孙杰,等 .基于品位耦合的太阳能互补联合循环发电系统集成评价理论[J].洁净煤技术,2022,28(11):64-72. |
SHI Y L, ZHANG Z W, SUN J,et al .Theoretical study on evaluation of integrated solar combined cyclesystem based on energy level coupling[J].Clean Coal Technology,2022,28(11):64-72. | |
[2] | 李闯,白福旺,胡思科 .余热锅炉型联合循环系统模型的建立及参数优化研究[J].热力发电,2021,50(2):74-83. |
LI C, BAI F W, HU S K .Establishment of system model and parameters optimization of HRSG combined cycle units[J].Thermal Power Generation,2021,50(2):74-83. | |
[3] | KOTOWICZ J,JOB M, BRZECZEK M .The characteristics of ultramodern combined cycle power plants[J].Energy,2015,92:197-211. doi:10.1016/j.energy.2015.04.006 |
[4] | BASSILY A M .Modeling,numerical optimization,and irreversibility reduction of a triple-pressure reheat combined cycle[J].Energy,2007,32(5):778-794. doi:10.1016/j.energy.2006.04.017 |
[5] | FRANCO A, GIANNINI N .A general method for the optimum design of heat recovery steam generators[J].Energy,2006,31(15):3342-3361. doi:10.1016/j.energy.2006.03.005 |
[6] | MANASSALDI J I, MUSSATI M C, NICOLÁS J,et al .Optimization of triple-pressure combined-cycle power plants by generalized disjunctive programming and extrinsic functions[J].Computers & Chemical Engineering,2020,146(8):107190. doi:10.1016/j.compchemeng.2020.107190 |
[7] | GU H, CUI X, ZHU H,et al .Multi-objective optimization analysis on gas-steam combined cycle system with exergy theory[J].Journal of Cleaner Production,2020,278:123939. doi:10.1016/j.jclepro.2020.123939 |
[8] | ZHANG G, ZHENG J, YANG Y,et al .Thermodynamic performance simulation and concise formulas for triple-pressure reheat HRSG of gas-steam combined cycle under off-design condition[J].Energy Conversion and Management,2016,122:372-385. doi:10.1016/j.enconman.2016.05.088 |
[9] | 于雪菲,张帅,刘琳琳,等 .电厂和碳捕集装置同步集成与调度优化研究[J].化工学报,2021,72(3):1447-1456. |
YU X F, ZHANG S, LIU L L,et al .Simultaneous integration and scheduling of power plant and carbon capture device[J].CIESC Journal,2021,72(3):1447-1456. | |
[10] | AMERI M, MOKHTARI H, SANI M M .4E analyses and multi-objective optimization of different fuels application for a large combined cycle power plant[J].Energy,2018,156:371-386. doi:10.1016/j.energy.2018.05.039 |
[11] | WANG Z, DUAN L, ZHANG Z .Thermoeconomic cost analysis on operation strategies of gas turbine combined cycle under off-design conditions[J].Case Studies in Thermal Engineering,2021,28:101617. doi:10.1016/j.csite.2021.101617 |
[12] | SAHU M K,SAN J .Thermoeconomic investigation of basic and intercooled gas turbine based power utilities incorporating air-film blade cooling[J].Journal of Cleaner Production,2017,170:842-856. doi:10.1016/j.jclepro.2017.09.030 |
[13] | 王德慧,李政,麻林巍,等 .大型燃气轮机冷却空气量分配及透平膨胀功计算方法研究[J].中国电机工程学报,2004,26(1):180-185. |
WANG D H, LI Z, MA L W,et al .Study on cooling air allocation and expander power calculation of large scale gas turbine[J].Proceedings of the CSEE,2004,26(1):180-185. | |
[14] | 王波,张士杰,肖云汉 .大型燃气轮机透平冷却空气量估算[J].燃气轮机技术,2009,22(3):29-32. |
WANG B, ZHANG S J, XIAO Y H .Study on cooling air allocation and expander power calculation of large scale gas turbine[J].GAS Turbine Technology,2009,22(3):29-32. | |
[15] | 王铭忠 .IGCC系统中燃气轮机的工况点选择与用“当量温度”进行特性计算[J].燃气轮机技术,1999,12(3):16-21. |
WANG M Z .Operating point selection of gas turbine in IGCC system and “equivalent temperature” is used for characteristic calculation[J].Gas Turbine Technology,1999,12(3):16-21. | |
[16] | 顾华年,朱志劼 .冷却空气对燃气轮机性能影响的计算分析[J].热力透平,2013,42(4):240-244. |
GU H N, ZHU Z J .Calculation analysis of impact of cooling air on gas turbine performance[J].Thermal Turbine,2013,42(4):240-244. | |
[17] | JONSSON M, BOLLAND O, BÜCKER DOMINIKUS,et al .Gas turbine cooling model for evaluation of novel cycles[J].Proceedings of Ecos,2005(7):641-650. |
[18] | MANASSALDI J I, ARIAS A M, SCENNA N J,et al .A discrete and continuous mathematical model for the optimal synthesis and design of dual pressure heat recovery steam generators coupled to two steam turbines[J].Energy,2016,103:807-823. doi:10.1016/j.energy.2016.02.129 |
[19] | MANASSALDI J I, MUSSATI M C, SCENNA N J,et al .Development of thermodynamic properties package libraries for using in GAMS through extrinsic functions[EB/OL].(2018-01-12)[2024-01-25]..2018. doi:10.1016/j.compchemeng.2019.03.028 |
[20] | VANDANI A M K, JODA F, BOOZARJOMEHRY R B .Exergic,economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants[J].Energy Conversion and Management,2016,109:103-112. doi:10.1016/j.enconman.2015.11.048 |
[1] | Yongkang WANG, Jun YI, Xiaodi XIE. Review of Wind-Solar-Hydrogen-Ammonia-Methanol Integrated Technologies and Industry [J]. Power Generation Technology, 2025, 46(3): 556-569. |
[2] | Kui WANG, Meng YU, Haijing ZHANG, Yan LI, Zhe LIU, Junhong GUO. Multi-Time Scale Optimization Strategy for New Distribution System Oriented to Photovoltaic Consumption and Low Carbon Demand Response of Ice Storage Air Conditioning Groups [J]. Power Generation Technology, 2025, 46(2): 284-295. |
[3] | Yang ZHENG, Yucheng REN, Yuwei WANG, Dingji XU, Huimin YANG. Evaluation of Comprehensive Benefits of Electric Energy Substitution in Regional Power Grids Based on Improved Cloud Model [J]. Power Generation Technology, 2025, 46(2): 399-408. |
[4] | Shanying HU, Yong JIN, Zhenye ZHANG. Developing New Quality Productive Forces to Achieve Carbon Neutrality [J]. Power Generation Technology, 2025, 46(1): 1-8. |
[5] | Wen LI, Fanpeng BU, Xiaotong ZHANG, Chuangdong YANG, Jing ZHANG. Optimal Operation Method of Electric-Hydrogen Hybrid Energy Storage Microgrid System Based on Typical Commercial Operation Mode [J]. Power Generation Technology, 2024, 45(6): 1186-1200. |
[6] | Changling LI, Xiqiang CHANG, Hao LU. Analysis and Forecast of the Shift From Double Control of Energy Consumption to Double Control of Carbon Emissions in Xinjiang [J]. Power Generation Technology, 2024, 45(6): 1114-1120. |
[7] | Sike SHAN, Hanxiao LIU, Meiling LIU, Shuai WANG, Ying CUI. Review of Carbon Footprint for Thermal Power Industry in China [J]. Power Generation Technology, 2024, 45(4): 575-589. |
[8] | Jiahai YUAN, Yuelin HU, Jian ZHANG. The Carbon Emission Efficiency of China’s Listed Thermal Power Companies: An Improved Three-Stage Slack Based Measure-Data Envelopment Analysis Model [J]. Power Generation Technology, 2024, 45(3): 458-467. |
[9] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[10] | Zhongrong LIANG, Maowei LAN, Guo ZHENG, Rongqiang HE, Keyang QU, Yunhua GAN. Study on Multi-Objective Optimization of High-Efficiency and Low-NO x Emissions of Power Station Boilers Based on Least Squares Support Vector Machines [J]. Power Generation Technology, 2023, 44(6): 809-816. |
[11] | Siqin CHEN, Yinan ZHU, Xiaochen LI, Xuehai WANG. Research on Optimization Method of Coal Blending for Carbon Emission Reduction Based on Bi-level Programming [J]. Power Generation Technology, 2023, 44(2): 155-162. |
[12] | Jingji ZHU, Yishu XU, Jingying XU, Huakun WANG, Xiaowei LIU, Dunxi YU, Jingjing MA, Minghou XU. Effect of Co-firing Ammonia on Coal Volatile Flame Characteristics and Particulate Matter Formation Behaviours [J]. Power Generation Technology, 2022, 43(6): 908-917. |
[13] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[14] | Qingping RAO, Jiangang HAO, Yunshan BAI. Analysis on the Development Path of Natural Gas Power Generation in China Under the Background of Carbon Emission Target [J]. Power Generation Technology, 2022, 43(3): 468-475. |
[15] | Lanhua LIU, Ruilin WANG, Hui HONG. Design of Calcium-based Carbon Capture System for Gas-Steam Combined Cycle Assisted by Solar Thermal Tower [J]. Power Generation Technology, 2021, 42(4): 517-524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||