[1] |
牟春华,居文平,王洋,等 .“双碳”目标下清洁高效灵活煤电技术现状及煤电前景展望[J].热力发电,2023,52(9):1-10.
|
|
MU C H, JU W P, WANG Y,et al .Techniques status and perspective of efficient-flexible coal fired power generation under carbon peak and neutrality targets[J].Thermal Power Generation,2023,52(9):1-10.
|
[2] |
张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092
|
|
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092
|
[3] |
贠晓可,张天任,黄玉萍,等 .广东电力低碳高质量发展下的电煤需求影响分析[J].广东电力,2023,36(11):1-10.
|
|
YUN X K, ZHANG T R, HUANG Y P,et al .Influence analysis of thermal coal demand under the low-carbon and high-quality development of electric power in Guangdong Province[J].Guangdong Electric Power,2023,36(11):1-10.
|
[4] |
程文煜,张健,熊卓,等 .“双碳” 目标下煤电机组节能改造技术发展与实践[J].电力科技与环保,2024,40(5):455-464.
|
|
CHENG W Y, ZHANG J, XIONG Z,et al .Development and practice of energy-saving retrofit technologies for coal power units under carbon peaking and carbon neutrality goals[J].Electric Power Technology and Environmental Protection,2024,40(5):455-464.
|
[5] |
李昌陵,常喜强,卢浩 .新疆能耗双控向碳排放双控转变分析和预测[J].发电技术,2024,45(6):1114-1120.
|
|
LI C L, CHANG X Q, LU H .Analysis and forecast of the shift from double control of energy consumption to double control of carbon emissions in Xinjiang[J].Power Generation Technology,2024,45(6):1114-1120.
|
[6] |
卢啸风,李建波,刘卓,等 .燃准东煤电站锅炉沾污结渣特性及防治措施研究进展[J].中国电机工程学报,2024,44(18):7247-7264.
|
|
LU X F, LI J B, LIU Z,et al .Research progress on the characteristics and countermeasures of ash slagging and fouling in boilers burning Zhundong coal[J].Proceedings of the CSEE,2024,44(18):7247-7264.
|
[7] |
ZHU C, QU S J, ZHANG J,et al .Distribution,occurrence and leaching dynamic behavior of sodium in Zhundong coal[J].Fuel,2017,190:189-197. doi:10.1016/j.fuel.2016.11.031
|
[8] |
吕俊复,史航,吴玉新,等 .燃用准东煤过程中碱/碱土金属迁移规律及锅炉结渣沾污研究进展[J].煤炭学报,2020,45(1):377-385.
|
|
LÜ J F, SHI H, WU Y X,et al .Transformation of AAEM and ash deposition characteristics during combustion of Zhundong coal[J].Journal of China Coal Society,2020,45(1):377-385.
|
[9] |
LONG X F, LI J B, WANG H J,et al .The morphological and mineralogical characteristics and thermal conductivity of ash deposits in a 220 MW CFBB firing Zhundong lignite[J].Energy,2023,263:125842. doi:10.1016/j.energy.2022.125842
|
[10] |
MCELROY M W, CARR R C, ENSOR D S,et al .Size distribution of fine particles from coal combustion[J].Science,1982,215(4528):13-19. doi:10.1126/science.215.4528.13
|
[11] |
龙潇飞,李建波,郭子鹏,等 .添加石灰石对准东煤CFB燃烧过程床料团聚和受热面积灰的影响[J].中国电机工程学报,2024,44(14):5631-5642.
|
|
LONG X F, LI J B, GUO Z P,et al .Effect of limestone addition on bed particle agglomeration and ash deposition on heat transfer surface during Zhundong coal combustion in a circulating fluidized bed[J].Proceedings of the CSEE,2024,44(14):5631-5642.
|
[12] |
魏砾宏,崔保崇,陈勇,等 .高碱煤钠赋存形态及其燃烧过程中迁移转化的研究进展[J].燃料化学学报,2019,47(8):897-906.
|
|
WEI L H, CUI B C, CHEN Y,et al .Occurrence of sodium in high alkali coal and its transformation during combustion[J].Journal of Fuel Chemistry and Technology,2019,47(8):897-906.
|
[13] |
WANG Z H, LIU Y Z, WHIDDON R,et al .Measurement of atomic sodium release during pyrolysis and combustion of sodium-enriched Zhundong coal pellet[J].Combustion and Flame,2017,176:429-438. doi:10.1016/j.combustflame.2016.10.020
|
[14] |
KLEINHANS U, WIELAND C, FRANDSEN F J,et al .Ash formation and deposition in coal and biomass fired combustion systems:progress and challenges in the field of ash particle sticking and rebound behavior[J].Progress in Energy and Combustion Science,2018,68:65-168. doi:10.1016/j.pecs.2018.02.001
|
[15] |
ZBOGAR A, FRANDSEN F, JENSEN P A,et al .Shedding of ash deposits[J].Progress in Energy and Combustion Science,2009,35(1):31-56. doi:10.1016/j.pecs.2008.07.001
|
[16] |
LI G D, LI S Q, HUANG Q,et al .Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J].Fuel,2015,143:430-437. doi:10.1016/j.fuel.2014.11.067
|
[17] |
ZHOU H, ZHOU B, LI L T,et al .Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong coal) in a 300 KW test furnace[J].Energy & Fuels,2013,27(11):7008-7022. doi:10.1021/ef4012017
|
[18] |
滕晓龙,胡丽娜,张文超,等 .准东煤飞灰沉积特性及数值模拟研究[J].燃烧科学与技术,2024,30(4):419-428.
|
|
TENG X L, HU L N, ZHANG W C,et al .Sedimentation characteristics and numerical simulation of Zhundong coal fly ash[J].Journal of Combustion Science and Technology,2024,30(4):419-428.
|
[19] |
BRINK A, LINDBERG D, HUPA M,et al .A temperature-history based model for the sticking probability of impacting pulverized coal ash particles[J].Fuel Processing Technology,2016,141:210-215. doi:10.1016/j.fuproc.2015.08.039
|
[20] |
KÆR S K, ROSENDAHL L A, BAXTER L L .Towards a CFD-based mechanistic deposit formation model for straw-fired boilers[J].Fuel,2006,85(5/6):833-848. doi:10.1016/j.fuel.2005.08.016
|
[21] |
WANG F L, HE Y L, TONG Z X,et al .Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems[J].International Journal of Heat and Mass Transfer,2017,104:774-786. doi:10.1016/j.ijheatmasstransfer.2016.08.112
|
[22] |
GARBA M U, INGHAM D B, MA L,et al .Prediction of potassium chloride sulfation and its effect on deposition in biomass-fired boilers[J].Energy & Fuels,2012,26(11):6501-6508. doi:10.1021/ef201681t
|
[23] |
LIANG Y, LI J, LONG X,et al.A numerical simulation study of ash deposition in a circulating fluidized bed during Zhundong lignite combustion[J].Fuel,2023,333:126501. doi:10.1016/j.fuel.2022.126501
|
[24] |
GUO Z P, LI J B, LIANG Y T,et al .A numerical simulation study into the effect of longitudinal and transverse pitch on deposition of Zhundong coal ash on tube bundles[J].Processes,2024,12(1):178. doi:10.3390/pr12010178
|
[25] |
BOURIS D, KONSTANTINIDIS E, BALABANI S,et al .Design of a novel,intensified heat exchanger for reduced fouling rates[J].International Journal of Heat and Mass Transfer,2005,48(18):3817-3832. doi:10.1016/j.ijheatmasstransfer.2005.03.026
|
[26] |
ZHOU H, HU S H .Numerical simulation of ash deposition behavior with a novel erosion model using dynamic mesh[J].Fuel,2021,286:119482. doi:10.1016/j.fuel.2020.119482
|
[27] |
LIU Z, LI J B, WANG Q H,et al .An experimental investigation into mineral transformation,particle agglomeration and ash deposition during combustion of Zhundong lignite in a laboratory-scale circulating fluidized bed[J].Fuel,2019,243:458-468. doi:10.1016/j.fuel.2019.01.134
|
[28] |
ZHENG Z M, YANG W M, CAI Y T,et al .Dynamic simulation on ash deposition and heat transfer behavior on a staggered tube bundle under high-temperature conditions[J].Energy,2020,190:116390. doi:10.1016/j.energy.2019.116390
|
[29] |
BALAKRISHNAN S, NAGARAJAN R, KARTHICK K .Mechanistic modeling,numerical simulation and validation of slag-layer growth in a coal-fired boiler[J].Energy,2015,81:462-470. doi:10.1016/j.energy.2014.12.058
|
[30] |
MU L, MIAO H C, ZHAO C,et al .Dynamic CFD modeling evaluation of ash deposition behavior and morphology evolution with different tube arrangements[J].Powder Technology,2021,379:279-295. doi:10.1016/j.powtec.2020.10.057
|
[31] |
WALSH P M, SAYRE A N, LOEHDEN D O,et al .Deposition of bituminous coal ash on an isolated heat exchanger tube:effects of coal properties on deposit growth[J].Progress in Energy and Combustion Science,1990,16(4):327-345. doi:10.1016/0360-1285(90)90042-2
|
[32] |
HSIAO W K, CHUN J H, SAKA N .The effects of wetting and surface roughness on liquid metal droplet bouncing[J].Journal of Manufacturing Science and Engineering,2009,131(2):021010. doi:10.1115/1.3090884
|
[33] |
JOHNSON K, KENDALL K, ROBERTS A D .Surface energy and the contact of elastic solids[J].Proceedings of the Royal Society of London.A.Mathematical and Physical Sciences,2007,324:301-313.
|
[34] |
SINGH S, TAFTI D .Particle deposition model for particulate flows at high temperatures in gas turbine components[J].International Journal of Heat and Fluid Flow,2015,52:72-83. doi:10.1016/j.ijheatfluidflow.2014.11.008
|
[35] |
MAO T, KUHN D C S, TRAN H .Spread and rebound of liquid droplets upon impact on flat surfaces[J].AIChE Journal,1997,43(9):2169-2179. doi:10.1002/aic.690430903
|
[36] |
NI J J, YU G S, GUO Q H,et al .Submodel for predicting slag deposition formation in slagging gasification systems[J].Energy & Fuels,2011,25(3):1004-1009. doi:10.1021/ef101696a
|
[37] |
LIU C, LIU Z H, ZHANG T,et al .Numerical investigation on development of initial ash deposition layer for a high-alkali coal[J].Energy & Fuels,2017,31(3):2596-2606. doi:10.1021/acs.energyfuels.6b03043
|
[38] |
严新荣,胡志勇,张鹏威,等 .煤电机组运行灵活性提升技术研究与应用[J].发电技术,2024,45(6):1074-1086.
|
|
YAN X R, HU Z Y, ZHANG P W,et al .Research and application of operation flexibility improvement technology for coal-fired power unit[J].Power Generation Technology,2024,45(6):1074-1086.
|
[39] |
谭琦,孙宗康,洪立,等 .一种T型吹灰装置在锅炉空气预热器上的应用[J].广东电力,2023,36(4):110-117.
|
|
TAN Q, SUN Z K, HONG L,et al .Application of a T-type soot blowing device on bolier air preheater[J].Guangdong Electric Power,2023,36(4):110-117.
|
[40] |
王志敏,黄骞,柳冠青,等 .适应新型电力系统的调峰火电机组空气预热器安全评估策略[J].南方能源建设,2024,11(6):33-40.
|
|
WANG Z M, HUANG Q, LIU G Q,et al .Flexibility-oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system[J].Southern Energy Construction,2024,11(6):33-40.
|
[41] |
LI J B, DU W J, CHENG L .Numerical simulation and experiment of gas-solid two phase flow and ash deposition on a novel heat transfer surface[J].Applied Thermal Engineering,2017,113:1033-1046. doi:10.1016/j.applthermaleng.2016.10.198
|
[42] |
WACŁAWIAK K, KALISZ S .A practical numerical approach for prediction of particulate fouling in PC boilers[J].Fuel,2012,97:38-48. doi:10.1016/j.fuel.2012.02.007
|