Power Generation Technology ›› 2021, Vol. 42 ›› Issue (4): 517-524.DOI: 10.12096/j.2096-4528.pgt.21081
• Intelligent Turbine Power Generation Technology • Previous Articles
Lanhua LIU1(), Ruilin WANG1(
), Hui HONG2,*(
)
Received:
2021-06-16
Published:
2021-08-31
Online:
2021-07-22
Contact:
Hui HONG
Supported by:
CLC Number:
Lanhua LIU, Ruilin WANG, Hui HONG. Design of Calcium-based Carbon Capture System for Gas-Steam Combined Cycle Assisted by Solar Thermal Tower[J]. Power Generation Technology, 2021, 42(4): 517-524.
参数 | 数值 | 参数 | 数值 | |
空气质量流量/(kg·s−1) | 641.97 | 压气机效率 | 0.89 | |
压气机出口压力/MPa | 15.37 | 透平入口烟气温度/K | 1 600.15 | |
烟气质量流量/(kg·s−1) | 658.46 | 透平设计效率 | 0.83 | |
高压缸入口温度/K | 567.50 | 中低压缸入口压力/MPa | 2.30 | |
高压缸入口压力/MPa | 9.79 | 中低压缸入口温度/K | 567.50 | |
高压相对内效率 | 0.87 | 中低压相对内效率 | 0.91 | |
燃空比 | 38.92 | 总发电功率/MW | 467.25 |
Tab. 1 Main parameters of gas-steam combined cycle wheel
参数 | 数值 | 参数 | 数值 | |
空气质量流量/(kg·s−1) | 641.97 | 压气机效率 | 0.89 | |
压气机出口压力/MPa | 15.37 | 透平入口烟气温度/K | 1 600.15 | |
烟气质量流量/(kg·s−1) | 658.46 | 透平设计效率 | 0.83 | |
高压缸入口温度/K | 567.50 | 中低压缸入口压力/MPa | 2.30 | |
高压缸入口压力/MPa | 9.79 | 中低压缸入口温度/K | 567.50 | |
高压相对内效率 | 0.87 | 中低压相对内效率 | 0.91 | |
燃空比 | 38.92 | 总发电功率/MW | 467.25 |
参数 | 数值 | 参数 | 数值 | |
定日镜反射率/% | 93 | 定日镜场效率/% | 78 | |
接收机发射率/% | 15 | 吸热器拦截效率/% | 98 | |
定日镜清洁系数 | 0.94 |
Tab. 2 Solar spotlight heating parameters
参数 | 数值 | 参数 | 数值 | |
定日镜反射率/% | 93 | 定日镜场效率/% | 78 | |
接收机发射率/% | 15 | 吸热器拦截效率/% | 98 | |
定日镜清洁系数 | 0.94 |
1 | 姜曼, 杨司玥, 刘定宜, 等. 中国各省可再生能源电力消纳量对碳排放的影响[J]. 电网与清洁能源, 2020, 36 (7): 87- 95. |
JIANG M , YANG S Y , LIU D Y , et al. Impacts of renewable electricity consumption on carbon dioxide emission in China's provinces[J]. Power System and Clean Energy, 2020, 36 (7): 87- 95. | |
2 |
潘旭东, 黄豫, 唐金锐, 等. 新能源发电发展的影响因素分析及前景展望[J]. 智慧电力, 2019, 47 (11): 41- 47.
DOI |
PAN X D , HUANG Y , TANG J R , et al. Influencing factors and prospects for development of renewable energy power generation[J]. Smart Power, 2019, 47 (11): 41- 47.
DOI |
|
3 | World Meteorological Organization. Statement on the state of the global climate in 2018[R]. Geneva: World Meteorological Organization, 2018. |
4 |
KANNICHE M , GROS-BONNIVARD R , JAUD P , et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering, 2010, 30 (1): 53- 62.
DOI |
5 |
邢晨健, 钱煜, 周燃, 等. 太阳能聚光光伏-余热碳捕集利用方式分析[J]. 华电技术, 2020, 42 (4): 84- 88.
DOI |
XING C J , QIAN Y , ZHOU R , et al. Analysis of utilization modes combining concentrating photovoltaic power generation and photovoltaic residual heat driving carbon capture[J]. Huadian Technology, 2020, 42 (4): 84- 88.
DOI |
|
6 |
赵传文, 陈晓平, 赵长遂. 碱金属基吸收剂干法脱除CO2技术的研究进展[J]. 动力工程, 2008, 28 (6): 827- 833.
DOI |
ZHAO C W , CHEN X P , ZHAO C S . Advances in the study of the dry removal of CO2 by alkali metal-based absorbents[J]. Power Engineering, 2008, 28 (6): 827- 833.
DOI |
|
7 | 郜时旺. 中国华能燃烧后CO捕集工程示范[R]. 北京: 华能清洁能源研究院, 2016. |
GAO S W. China Huaneng combustion co-capture project demonstration[R]. Beijing: Huaneng Institute for Clean Energy Research, 2016. | |
8 | VEGA F , BAENA-MORENO F , FERNÁNDEZ L M G , et al. Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale[J]. Applied Energy, 2020, 260, 114313. |
9 |
ZHAI R , QI J , ZHU Y , et al. Novel system integrations of 1000MW coal-fired power plant retrofitted with solar energy and CO2 capture system[J]. Applied Thermal Engineering, 2017, 125, 1133- 1145.
DOI |
10 | GREEN D A, TURK B S, GUPTA R P, et al. Carbon dioxide capture from flue gas using dry regenerable sorbents[R]. Chicago, USA: Research Triangle Institute, 2004. |
11 | 朱维群, 王倩. 碳中和目标下的化石能源利用新技术路线开发[J]. 发电技术, 2021, 42 (1): 3- 7. |
ZHU W Q , WANG Q . Development of new technological routes for fossil energy utilization under the goal of carbon neutral[J]. Power Generation Technology, 2021, 42 (1): 3- 7. | |
12 | ZHAO Y W , HONG H , ZHANG X S , et al. Integrating mid-temperature solar heat and post-combustion CO2-capture in a coal-fired power plant[J]. Solar Energy, 2012, 86 (11): 3196- 3204. |
13 | KHALILPOUR R , MILANI D , QADIR A , et al. A novel process for direct solvent regeneration via solar thermal energy for carbon capture[J]. Renewable Energy, 2017, 104, 60- 75. |
14 | ZHAI R , QI J , ZHU Y , et al. Novel system integrations of 1000MW coal-fired power plant retrofitted with solar energy and CO2 capture system[J]. Applied Thermal Engineering, 2017, 125, 1133- 1145. |
15 | ZHANG X , LIU Y . Performance assessment of CO2 capture with calcination carbonation reaction process driven by coal and concentrated solar power[J]. Applied Thermal Engineering, 2014, 70 (1): 13- 24. |
16 | 陈强. 分布式冷热电联供系统全工况特性与主动调控机理及方法[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2014. |
CHEN Q. The whole operating condition characteristics and active regulation mechanism and method of distributed hot and cold power supply system[D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2014. | |
17 | WANG R L , SUN J , HONG H . Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking[J]. Renewable Energy, 2019, 141, 596- 612. |
18 | 白子为. 燃气机组热力系统全工况优化及策略研究[D]. 北京: 华北电力大学, 2019. |
BAI Z W. Study on the optimization and strategy of the thermal system of gas units[D]. Beijing: North China Electric Power University, 2019. | |
19 | LIU W , FENG B , WU Y , et al. Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environmental Science Technology, 2010, 44 (8): 3093- 3097. |
20 | 邢晨健, 王瑞林, 赵传文. 燃煤电站与光伏余热辅助胺法脱碳系统集成[J]. 洁净煤技术, 2021, 27 (2): 170- 179. |
XING C J , WANG R L , ZHAO C W . Coal-fired power station and photovoltaic residual heat auxiliary amine method decarbonization system integration[J]. Clean Coal Technology, 2021, 27 (2): 170- 179. | |
21 | WANG R L , Sun J , Hong H , et al. Comprehensive evaluation for different modes of solar-aided coal-fired power generation system under common framework regarding both coal-savability and efficiency-promotability[J]. Energy, 2018, 143, 151- 167. |
[1] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[2] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
[3] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[4] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[5] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[6] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[7] | Hao SUN, Bo GAO, Jianxing LIU. Study on Heliostat Field Layout of Solar Power Tower Plant [J]. Power Generation Technology, 2021, 42(6): 690-698. |
[8] | Lanhua LIU, Linwen DI, Xingwan DONG, Ruilin WANG. Study on Dynamic Characteristics of Parabolic Trough Solar Collector Circuit [J]. Power Generation Technology, 2021, 42(6): 673-681. |
[9] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Experimental Analysis of the Influence of Flow Rate on Heat Transfer Characteristics of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2021, 42(6): 665-672. |
[10] | Zezhong WANG, Pingrui HUANG, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Research Progress of Solid-Gas Two-Phase Chemical Heat Storage Technology for Solar Thermal Power Generation [J]. Power Generation Technology, 2021, 42(2): 238-246. |
[11] | Yaodong LIU, Yanping ZHANG, Liang WAN, Wei GAO. Heat Transfer Modelling and Performance Analysis of Trough Solar Thermal Power Collector Based on Al2O3 Nanofluid [J]. Power Generation Technology, 2021, 42(2): 230-237. |
[12] | Kaiyun ZHENG. Application of Supercritical Carbon Dioxide Cycle Power Generation Technology [J]. Power Generation Technology, 2020, 41(4): 399-406. |
[13] | Weibo ZHANG,Yurong XIE,Fan YANG,Yuhao ZHOU,Shipeng WANG. Research on Multi-energy Complementary Distributed Integrated Energy Supply System and Typical Development Scheme [J]. Power Generation Technology, 2020, 41(3): 245-251. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||