Power Generation Technology ›› 2023, Vol. 44 ›› Issue (6): 781-789.DOI: 10.12096/j.2096-4528.pgt.23039
• Virtual Power Plant Planning, Scheduling and Control Technology • Previous Articles Next Articles
Zhonghao QIAN1, Jun HU1, Sichen SHEN2, Ting QIN1, Hanyi MA1, Xiaodong WANG1, Caoyi FENG1, Zhinong WEI2
Received:
2023-04-03
Published:
2023-12-31
Online:
2023-12-28
Supported by:
CLC Number:
Zhonghao QIAN, Jun HU, Sichen SHEN, Ting QIN, Hanyi MA, Xiaodong WANG, Caoyi FENG, Zhinong WEI. Multi-Power Coordinated Optimization Operation Strategy Considering Conditional Value at Risk[J]. Power Generation Technology, 2023, 44(6): 781-789.
设备 | 数值 | 数值 |
---|---|---|
燃气轮机 | 最大功率/MW | 5.67 |
最小功率/MW | 2.5 | |
爬坡率/(MW/h) | 3 | |
运行成本/[欧元/(MW∙h)] | 50 | |
储能 | 最大储电量/(MW∙h) | 40 |
最大充(放)电功率/MW | 8 | |
充(放)电效率 | 0.9 |
Tab. 1 Parameters of gas turbine and energy storage
设备 | 数值 | 数值 |
---|---|---|
燃气轮机 | 最大功率/MW | 5.67 |
最小功率/MW | 2.5 | |
爬坡率/(MW/h) | 3 | |
运行成本/[欧元/(MW∙h)] | 50 | |
储能 | 最大储电量/(MW∙h) | 40 |
最大充(放)电功率/MW | 8 | |
充(放)电效率 | 0.9 |
设备 | 参数 | 数值 |
---|---|---|
火电机组1 | 最大功率/MW | 500 |
最小功率/MW | 0 | |
爬坡率/(MW/h) | 50 | |
运行成本/[欧元/(MW⋅h)] | 70 | |
火电机组2 | 最大功率/MW | 100 |
最小功率/MW | 0 | |
爬坡率/(MW/h) | 20 | |
运行成本/[欧元/(MW⋅h)] | 60 | |
柴油机组 | 最大功率/MW | 10 |
最小功率/MW | 0 | |
运行成本/[欧元/(MW⋅h)] | 30 |
Tab. 2 Parameters of thermal power units and diesel units
设备 | 参数 | 数值 |
---|---|---|
火电机组1 | 最大功率/MW | 500 |
最小功率/MW | 0 | |
爬坡率/(MW/h) | 50 | |
运行成本/[欧元/(MW⋅h)] | 70 | |
火电机组2 | 最大功率/MW | 100 |
最小功率/MW | 0 | |
爬坡率/(MW/h) | 20 | |
运行成本/[欧元/(MW⋅h)] | 60 | |
柴油机组 | 最大功率/MW | 10 |
最小功率/MW | 0 | |
运行成本/[欧元/(MW⋅h)] | 30 |
场景 | 概率 | 场景 | 概率 |
---|---|---|---|
s1 | 0.22 | s9 | 0.08 |
s2 | 0.12 | s10 | 0.02 |
s3 | 0.02 | s11 | 0.04 |
s4 | 0.02 | s12 | 0.02 |
s5 | 0.02 | s13 | 0.02 |
s6 | 0.02 | s14 | 0.02 |
s7 | 0.02 | s15 | 0.02 |
s8 | 0.34 |
Tab. 3 Probabilities of the PV output scenarios
场景 | 概率 | 场景 | 概率 |
---|---|---|---|
s1 | 0.22 | s9 | 0.08 |
s2 | 0.12 | s10 | 0.02 |
s3 | 0.02 | s11 | 0.04 |
s4 | 0.02 | s12 | 0.02 |
s5 | 0.02 | s13 | 0.02 |
s6 | 0.02 | s14 | 0.02 |
s7 | 0.02 | s15 | 0.02 |
s8 | 0.34 |
模型 | 成本 | 总成本 | |
---|---|---|---|
日前阶段 | 日内阶段 | ||
确定性模型 | -6 236.2 | 7 564.9 | 1 328.7 |
CVaR模型 | -5 418.6 | 6 600.3 | 1 181.7 |
Tab. 4 Comparison of cost between deterministic model and CVaR model
模型 | 成本 | 总成本 | |
---|---|---|---|
日前阶段 | 日内阶段 | ||
确定性模型 | -6 236.2 | 7 564.9 | 1 328.7 |
CVaR模型 | -5 418.6 | 6 600.3 | 1 181.7 |
1 | KIM W W, SHIN J S, KIM J O .Operation strategy of multi-energy storage system for ancillary services[J].IEEE Transactions on Power Systems,2017,32(6):4409-4417. doi:10.1109/tpwrs.2017.2665669 |
2 | 王芸芸,马志程,周强,等 .兼顾公平性的多能源合作博弈优化调度[J].太阳能学报,2022,43(10):482-492. |
WANG Y Y, MA Z C, ZHOU Q,et al .Multi energy cooperative game optimal scheduling considering fairness[J].Acta Energiae Solaris Sinica,2022,43(10):482-492. | |
3 | 张淑兴,马驰,杨志学,等 .基于深度确定性策略梯度算法的风光储系统联合调度策略[J].中国电力,2023,56(2):68-76. |
WANG S X, MA C, YANG Z X,et al .Deep deterministic policy gradient algorithm based wind-photovoltaic-storage hybrid system joint dispatch[J].Electric Power,2023,56(2):68-76. | |
4 | 杨锡勇,张仰飞,林纲,等 .考虑需求响应的源-荷-储多时间尺度协同优化调度策略[J].发电技术,2023,44(2):253-260. |
YANG X Y, ZHANG Y F, LIN G,et al .Multi-time scale collaborative optimal scheduling strategy for source-load-storage considering demand response[J].Power Generation Technology,2023,44(2):253-260. | |
5 | 康俊杰,赵春阳,周国鹏,等 .风光水火储多能互补示范项目发展现状及实施路径研究[J].发电技术,2023,44(3):407-416. doi:10.12096/j.2096-4528.pgt.22048 |
KANG J J, ZHAO C Y, ZHOU G P,et al .Research on development status and implementation path of wind-solar-water-thermal-energy storage multi-energy complementary demonstration project[J].Power Generation Technology,2023,44(3):407-416. doi:10.12096/j.2096-4528.pgt.22048 | |
6 | 郭佳兴,王金梅,张海同 .基于虚拟电厂的多能源协同系统调度优化策略[J].电力建设,2022,43(12):141-151. |
GUO J X, WANG J M, ZHANG H T .Scheduling optimization strategy based on virtual power plant for multi-energy collaborative system[J].Electric Power Construction,2022,43(12):141-151. | |
7 | 宣文博,李慧,刘忠义,等 .一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J].发电技术,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 |
XUAN W B, LI H, LIU Z Y,et al .A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J].Power Generation Technology,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 | |
8 | 何畅,程杉,徐建宇,等 .基于多时间尺度和多源储能的综合能源系统能量协调优化调度[J].电力系统及其自动化学报,2020,32(2):77-84. |
HE C, CHENG S, XU J Y,et al .Coordinated optimal scheduling of integrated energy system considering multi-time scale and hybrid energy storage system[J].Proceedings of the CSU-EPSA,2020,32(2):77-84. | |
9 | SUN K Q, LI K J, PAN J P,et al .An optimal combined operation scheme for pumped storage and hybrid wind photovoltaic complementary power generation system[J].Applied Energy,2019,242:1155-1163. doi:10.1016/j.apenergy.2019.03.171 |
10 | 王晛,吴丙楠,张少华 .含风电的综合能源供应商参与投标竞争的多能源市场博弈分析[J/OL].电网技术 [2023-03-29].. |
WANG X, WU B N, ZHANG S H .Game analysis of multi-energy market with strategic bidding of integrated energy suppliers including wind power[J/OL].Power System Technology[2023-03-29].. | |
11 | MOHY-UD-DIN G, MUTTAQI K M, SUTANTO D .A cooperative energy transaction model for VPP integrated renewable energy hubs in deregulated electricity markets[J].IEEE Transactions on Industry Applications,2022,58(6):7776-7791. doi:10.1109/tia.2022.3195965 |
12 | 吴心弘,潘玲玲,王泽荣,等 .能量-备用多品种电力交易下空调负荷聚合商竞价策略[J].电力自动化设备,2023,43(2):203-211. |
WU X H, PAN L L, WANG Z R,et al .Bidding strategy of air conditioning load aggregator for energy-reserve multi-variety power trading[J].Electric Power Automation Equipment,2023,43(2):203-211. | |
13 | JIA Y, MI Z, YU Y,et al .A bilevel model for optimal bidding and offering of flexible load aggregator in day-ahead energy and reserve markets[J].IEEE Access,2018,6:67799-67808. doi:10.1109/access.2018.2879058 |
14 | 卫志农,陈妤,黄文进,等 .考虑条件风险价值的虚拟电厂多电源容量优化配置模型[J].电力系统自动化,2018,42(4):39-46. doi:10.7500/AEPS20170621008 |
WEI Z N, CHEN Y, HUANG W J,et al .Optimal allocation model for multi-energy capacity of virtual power plant considering conditional value-at-risk[J].Automation of Electric Power Systems,2018,42(4):39-46. doi:10.7500/AEPS20170621008 | |
15 | MA L, LIU N, ZHANG J,et al .Real-time rolling horizon energy management for the energy-hub-coordinated prosumer community from a cooperative perspective[J].IEEE Transactions on Power Systems,2019,34(2):1227-1242. doi:10.1109/tpwrs.2018.2877236 |
16 | HAN H T, SHEN S C, WEI Z N,et al .Security constrained distributed transaction model for multiple prosumers[J/OL].CSEE Journal of Power and Energy Systems[2023-03-29].doi:10.17775/CSEEJPES.2022.069 |
50 | . doi:10.1023/a:1010650624155 |
17 | FENG W, WEI Z N, SUN G Q,et al .A conditional value-at-risk-based dispatch approach for the energy management of smart buildings with HVAC systems[J].Electric Power Systems Research,2020,188:106535. doi:10.1016/j.epsr.2020.106535 |
18 | 赵建立,向佳霓,汤卓凡,等 .虚拟电厂在上海的实践探索与前景分析[J].中国电力,2023,56(2):1-13. doi:10.11930/j.issn.1004-9649.202208078 |
ZHAO J L, XIANG J N, TANG Z F,et al .Practice exploration and prospect analysis of virtual power plant in Shanghai [J].Electric Power,2023,56(2):1-13. doi:10.11930/j.issn.1004-9649.202208078 | |
19 | 黄勤坤,邱瑜,王飞,等 .考虑多重不确定性的虚拟电厂随机优化调度[J].电网与清洁能源,2022,38(11):8-16. doi:10.3969/j.issn.1674-3814.2022.11.002 |
HUANG Q K, QIU Y, WANG F,et al .Stochastic optimal scheduling of virtual power plants considering multiple uncertainties[J].Power System and Clean Energy,2022,38(11):8-16. doi:10.3969/j.issn.1674-3814.2022.11.002 | |
20 | CUI S C, WANG Y W, XIAO J W .Peer-to-peer energy sharing among smart energy buildings by distributed transaction[J].IEEE Transactions on Smart Grid,2019,10(6):6491-6501. doi:10.1109/tsg.2019.2906059 |
21 | CHEN S, CONEJO A J, SIOSHANSI R,et al .Operational equilibria of electric and natural gas systems with limited information interchange[J].IEEE Transactions on Power Systems,2020,35(1):662-671. doi:10.1109/tpwrs.2019.2928475 |
22 | ROCKAFELLAR R T, URYASEV S .Optimization of conditional value-at-risk[J].The Journal of Risk,2000,2(3):21-41. doi:10.21314/jor.2000.038 |
[1] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
[2] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
[3] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[4] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[5] | Songyuan YU, Junsong ZHANG, Zhiwei YUAN, Fang FANG. Resilience Enhancement Strategy of Combined Heat and Power-Virtual Power Plant Considering Thermal Inertia [J]. Power Generation Technology, 2023, 44(6): 758-768. |
[6] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
[7] | Yongjie ZHONG, Ling JI, Jingxia LI, Jianxun ZUO, Zidong WANG, Shiwei WU. System Framework and Comprehensive Functions of Intelligent Operation Management and Control Platform for Virtual Power Plant [J]. Power Generation Technology, 2023, 44(5): 656-666. |
[8] | Mengshu SHI, Xiaofeng XU, Jiguang ZHANG, Yi LI, Baozhong ZHOU, Ying LE, Sheng BI. A Two-Stage Optimization Strategy for Virtual Power Plants Considering the Electricity-Hydrogen Market [J]. Power Generation Technology, 2023, 44(5): 645-655. |
[9] | Haibin YU, Yuchen ZHANG, Yangyang LIU, Zengjie LU, Jinde WENG. Optimal Dispatching Bidding Strategy of Multi-Agent Virtual Power Plant Participating in Electricity Market Under Carbon Trading Mechanism [J]. Power Generation Technology, 2023, 44(5): 634-644. |
[10] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[11] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[12] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[13] | Qiuye SUN, Jia YAO, Yifan WANG. From Virtual Power Plant to Real Electricity: Summary and Prospect of Virtual Power Plant Research [J]. Power Generation Technology, 2023, 44(5): 583-601. |
[14] | Tianqi SONG, Yunting MA, Zhihui ZHANG. Operation Mode and Economy of Photovoltaic Coupled Water Electrolysis Hydrogen Production System As a Kind of Virtual Power Plant Resource [J]. Power Generation Technology, 2023, 44(4): 465-472. |
[15] | Wenbo XUAN, Hui LI, Zhongyi LIU, Yeguang SUN, Kai HOU. A Method for Improving the Accommodating Capability of Urban Renewable Energy Based on Virtual Power Plant Technology [J]. Power Generation Technology, 2021, 42(3): 289-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||