Power Generation Technology ›› 2022, Vol. 43 ›› Issue (4): 584-592.DOI: 10.12096/j.2096-4528.pgt.22077
• Carbon Capture, Utilization and Storage Technology • Previous Articles Next Articles
Lingjie FENG, Rongrong ZHAI, Yicun GUO, Ning MA, Jiaxin FU
Received:
2022-04-13
Published:
2022-08-31
Online:
2022-09-06
Supported by:
CLC Number:
Lingjie FENG, Rongrong ZHAI, Yicun GUO, Ning MA, Jiaxin FU. Study on the Comprehensive Performance of Natural Gas Combined Cycle Plant Integrated With Carbon Capture System[J]. Power Generation Technology, 2022, 43(4): 584-592.
天然气成分 | 体积分数/% |
---|---|
甲烷 | 89 |
乙烷 | 7 |
丙烷 | 1 |
丁烷 | 0.1 |
戊烷 | 0.01 |
二氧化碳 | 2 |
氮气 | 0.89 |
Tab. 1 Composition of natural gas
天然气成分 | 体积分数/% |
---|---|
甲烷 | 89 |
乙烷 | 7 |
丙烷 | 1 |
丁烷 | 0.1 |
戊烷 | 0.01 |
二氧化碳 | 2 |
氮气 | 0.89 |
参数 | 数值 |
---|---|
再沸器能耗/(MJ/kg CO2) | 3.56 |
再沸器入口温度/℃ | 156 |
再沸器出口温度/℃ | 133 |
抽汽温度/℃ | 311 |
抽汽流量/(kg/s) | 126 |
捕集率/% | 90 |
Tab. 2 Parameters of a capture system based on MEA
参数 | 数值 |
---|---|
再沸器能耗/(MJ/kg CO2) | 3.56 |
再沸器入口温度/℃ | 156 |
再沸器出口温度/℃ | 133 |
抽汽温度/℃ | 311 |
抽汽流量/(kg/s) | 126 |
捕集率/% | 90 |
参数 | 参考值 | 模拟值 | |
---|---|---|---|
联合 循环 参数 | 热输入功率/MW | 1 504.49 | 1 504.8 |
净功率/MW | 874 | 872.90 | |
总功率/MW | 883.85 | 883.13 | |
净效率/% | 58.09 | 57.96 | |
总效率/% | 58.75 | 58.64 | |
压缩机压比 | 34 | 34 | |
燃气轮机排气温度/℃ | 619 | 619 | |
主蒸汽温度/℃ | 585 | 585 | |
主蒸汽压力/MPa | 15.9 | 15.9 | |
再热温度/℃ | 585 | 585 | |
再热压力/MPa | 4 | 4 | |
凝汽器压力/kPa | 4.5 | 4.5 | |
下游 烟气 参数 | 流量/(kg/s) | 1 321.79 | 1 319.76 |
压力/kPa | 101.8 | 101.8 | |
温度/℃ | 85.2 | 85.2 | |
CO2体积分数/% | 4.2 | 4.2 | |
H2O体积分数/% | 8.7 | 8.5 | |
N2体积分数/% | 74.3 | 74.4 | |
O2体积分数/% | 11.9 | 12.0 | |
Ar,NO x 体积分数/% | 0.9 | 0.9 |
Tab. 3 Verification results of a natural gas combined cycle model
参数 | 参考值 | 模拟值 | |
---|---|---|---|
联合 循环 参数 | 热输入功率/MW | 1 504.49 | 1 504.8 |
净功率/MW | 874 | 872.90 | |
总功率/MW | 883.85 | 883.13 | |
净效率/% | 58.09 | 57.96 | |
总效率/% | 58.75 | 58.64 | |
压缩机压比 | 34 | 34 | |
燃气轮机排气温度/℃ | 619 | 619 | |
主蒸汽温度/℃ | 585 | 585 | |
主蒸汽压力/MPa | 15.9 | 15.9 | |
再热温度/℃ | 585 | 585 | |
再热压力/MPa | 4 | 4 | |
凝汽器压力/kPa | 4.5 | 4.5 | |
下游 烟气 参数 | 流量/(kg/s) | 1 321.79 | 1 319.76 |
压力/kPa | 101.8 | 101.8 | |
温度/℃ | 85.2 | 85.2 | |
CO2体积分数/% | 4.2 | 4.2 | |
H2O体积分数/% | 8.7 | 8.5 | |
N2体积分数/% | 74.3 | 74.4 | |
O2体积分数/% | 11.9 | 12.0 | |
Ar,NO x 体积分数/% | 0.9 | 0.9 |
参数 | NGCC | 不同抽汽方式 | ||||
---|---|---|---|---|---|---|
参考值 | 模拟值 | 方案1 | 方案2 | 方案3 | 方案4 | |
热输入/MW | 1 520.79 | 1 520.63 | 1 520.63 | 1 520.63 | 1 520.63 | 1 520.63 |
净功率/MW | 874 | 872.90 | 772.45 | 773.62 | 770.45 | 790.64 |
总功率/MW | 884.34 | 883.13 | 781.91 | 783.14 | 780.07 | 800.12 |
净效率/% | 57.47 | 57.96 | 51.29 | 51.37 | 51.15 | 52.50 |
总效率/% | 58.15 | 58.64 | 51.92 | 52.00 | 51.79 | 53.12 |
能量惩罚/% | — | — | 6.67 | 6.59 | 6.81 | 5.46 |
Tab. 4 Results of a NGCC system integrated a carbon capture system based on MEA
参数 | NGCC | 不同抽汽方式 | ||||
---|---|---|---|---|---|---|
参考值 | 模拟值 | 方案1 | 方案2 | 方案3 | 方案4 | |
热输入/MW | 1 520.79 | 1 520.63 | 1 520.63 | 1 520.63 | 1 520.63 | 1 520.63 |
净功率/MW | 874 | 872.90 | 772.45 | 773.62 | 770.45 | 790.64 |
总功率/MW | 884.34 | 883.13 | 781.91 | 783.14 | 780.07 | 800.12 |
净效率/% | 57.47 | 57.96 | 51.29 | 51.37 | 51.15 | 52.50 |
总效率/% | 58.15 | 58.64 | 51.92 | 52.00 | 51.79 | 53.12 |
能量惩罚/% | — | — | 6.67 | 6.59 | 6.81 | 5.46 |
项目 | 无碳捕集 | 方案1 | 方案2 | 方案3 | 方案4 |
---|---|---|---|---|---|
合计 | 10 222.75 | 9 446.74 | 9 474.89 | 9 624.53 | 8 959.16 |
除氧器循环泵 | 4 250.31 | 4 356.68 | 4 374.19 | 4 250.31 | 4 378.47 |
冷却系统 | 5 719.33 | 4 971.64 | 4 980.57 | 5 121.11 | 4 461.32 |
给水泵 | 253.11 | 118.42 | 120.13 | 253.11 | 119.37 |
Tab. 5 Auxiliary energy consumption details
项目 | 无碳捕集 | 方案1 | 方案2 | 方案3 | 方案4 |
---|---|---|---|---|---|
合计 | 10 222.75 | 9 446.74 | 9 474.89 | 9 624.53 | 8 959.16 |
除氧器循环泵 | 4 250.31 | 4 356.68 | 4 374.19 | 4 250.31 | 4 378.47 |
冷却系统 | 5 719.33 | 4 971.64 | 4 980.57 | 5 121.11 | 4 461.32 |
给水泵 | 253.11 | 118.42 | 120.13 | 253.11 | 119.37 |
1 | DIVYA P, ONKAR S .Thermo-economic study of combined cycle power plant with carbon capture and methanation[J].Journal of Cleaner Production,2019,231. doi:10.1016/j.jclepro.2019.05.217 |
2 | 焦松 .燃气-蒸汽联合循环机组碳捕集方案及优化[D].北京:华北电力大学,2019. |
JIAO S .Carbon capture scheme and optimization of nature gas combined cycle unit[D]. Beijing:School of Energy Power and Mechanical Engineering,2019. | |
3 | BAO J J, ZHANG L, SONG C X,et al .Reduction of efficiency penalty for a natural gas combined cycle power plant with post-combustion CO2 capture: integration of liquid natural gas cold energy[J].Energy Conversion and Management,2019,198(C):111852. doi:10.1016/j.enconman.2019.111852 |
4 | 傅佳欣 .燃烧后碳捕集与燃气蒸汽联合循环耦合特性研究[D].北京:华北电力大学,2021. |
FU J X .The performance analysis of the integration of Natural gas combined cycle with CO2 capture process after combustion[D].Beijing:School of Energy Power and Mechanical Engineering,2021. | |
5 | AKEEB O, WANG L, XIE W G,et al. Post-combustion CO 2 capture via a variety of temperature ranges and material adsorption process: a review[J].Journal of Environmental Management,2022:115026. |
6 | JAIRO R,MAI B, LARS O,et al .Does CCS reduce power generation flexibility? A dynamic study of combined cycles with post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control,2020,4:102984. doi:10.1016/j.ijggc.2020.102984 |
7 | 柳康,许世森,李广宇,等.基于整体煤气化联合循环的燃烧前CO2捕集工艺及系统分析[J].化工进展,2018,37(12):4 897-4 907. |
LIU K, XU S S, LI G Y,et al .Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J].Chemical Industry and Engineering Progress,2018,37(12):4897-4907. | |
8 | 蔡博峰,李琦,林千果,等 .中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R].北京:生态环境部环境规划院气候变化与环境政策研究中心,2020:18. |
CAI B F, LI Q, LIN Q G,et al .China’s 2019 annual report of carbon dioxide capture and utilization storage(CCUS)[R].Beijing: Research Center of Climate Change and Environmental Policy,Chinese Academy of Environmental Planning,2020:18. | |
9 | 王高峰,秦积舜,孙伟善 .碳捕集、利用与封存案例分析及产业发展建议[M].北京:化学工业出版社,2020:16-18. |
WANG G F, QIN J S, SUN W S .CCUS cases analysis and industrial development suggestions[M].Beijing:Chemical Industry Press,2020:16-18. | |
10 | 陆诗建 .碳捕集、利用与封存技术[M].北京:中国石化出版社,2020:13-16. |
LU S J .Carbon capture,utilization and storage[M].Beijing:Chemical Industry Press,2020:13-16. | |
11 | VEGA F, BAENA-MORENO F M, GALLEGO FEMANDEZ L M,et al .Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale[J].Applied Energy,2020,260:114313. doi:10.1016/j.apenergy.2019.114313 |
12 | ROCHELLE G T, WU Y, CHEN E,et al .Pilot plant demonstration of piperazine with the advanced flash stripper[J].International Journal of Greenhouse Gas Control,2019,84:72-81. doi:10.1016/j.ijggc.2019.03.014 |
13 | 王涛,刘飞,方梦祥,等 .两相吸收剂捕集二氧化碳技术研究进展[J].中国电机工程学报,2021,41(4):1186-1196. |
WANG T, LIU F, FANG M X,et al .Research progress in biphasic solvent for CO2 capture technology[J].Proceedings of the CSEE,2021,41(4):1186-1196. | |
14 | 段成,杨川箬,金君素,等 .负载固体胺的多孔聚酯对CO2的吸附[J].中国电机工程学报,2021,41(18):1-11. |
DUAN C, YANG C R, JIN J S,et al .CO2 adsorption by porous polyester with soild amine[J].Proceedings of the CSEE,2021,41(18):1-11. | |
15 | SAHRAIE S, RASHIDI H, VALEH-E-SHEYDA P .An optimization framework to investigate the CO2 capture performance by MEA: experimental and statistical studies using Box-Behnken design[J].Process Safety and Environmental Protection,2019:161-168. doi:10.1016/j.psep.2018.11.026 |
16 | GALINDO P, SCHAFFER A, BRECHTEL K,et al .Experimental research on the performance of CO2-loaded solutions of MEA and DEA at regeneration conditions[J].Fuel,2012(101):2-8. doi:10.1016/j.fuel.2011.02.005 |
17 | BRIGMAN N, SHAH M I, FALK-PEDERSEN O,et al .Results of amine plant operations from 30 wt% and 40 wt% aqueous MEA testing at the CO2 Technology Centre Mongstad[J].Energy Procedia,2014:6012-6022. doi:10.1016/j.egypro.2014.11.635 |
18 | BARZAGLI F, GIORGI C, MANI F,et al .Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: a comparative analysis carried out by 13C NMR spectroscopy[J].Applied Energy,2018:208-219. doi:10.1016/j.apenergy.2018.03.076 |
19 | LV B H, ZHOU X B, ZHOU Z M,et al .Kinetics and thermodynamics of CO2 absorption into a novel DETA-AMP-PMDETA biphasic solvent[J].ACS Sustainable Chemistry & Engineering,2019,7(15):13400-13410. doi:10.1021/acssuschemeng.9b02700 |
20 | 郭李恒,丁玉栋,廖强,等 .基于蒸汽压缩-分流的电厂烟气CO2捕集过程模拟优化[J].动力工程学报,2021,41(7):565-571. |
GUO L H, DING Y D, LIAO Q,et al .Simulation and optimization of carbon dioxide capture process for flue gas in power plants based on vapor compression and split flow[J].Journal of Chinese Society of Power Engineering,2021,41(7):565-571. | |
21 | COUSINS A, WARDHAUGH L T, FERON P H M .A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption[J].International Journal of Greenhouse Gas Control,2011:605-619. doi:10.1016/j.ijggc.2011.01.002 |
22 | LI K K, LEIGH W, FERON P,et al .Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements[J].Applied Energy,2015,12:109. doi:10.1016/j.apenergy.2015.12.109 |
23 | MARCHIORO YSTAD P A, BOLLAND O, HILLESTAD M .NGCC and hard-coal power plant with CO2 capture based on absorption[J].Energy Procedia,2012:33-44. doi:10.1016/j.egypro.2012.06.019 |
24 | HU Y, XU G, XU C,et al .Thermodynamic analysis and techno-economic evaluation of an integrated natural gas combined cycle (NGCC) power plant with post-combustion CO2 capture[J].Applied Thermal Engineering,2017:308-316. doi:10.1016/j.applthermaleng.2016.09.094 |
25 | CARAPELLUCCI R, GIORDANO L, VACCARELLI M,et al .Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants[J].Energy,2017:808-826. doi:10.1016/j.energy.2016.10.114 |
26 | SOREN E, VOLKER R, ULRICH L,et al .Techno economic evalution of different post combustion CO2 capture process flow sheet modifications[R].Cheltenham:Ieaghg,2014. |
[1] | Yuhang SUN, Chao LI, Zhengrong WANG, Luchang SUN, Kailiang WANG, Ximing HU, Mengxiang FANG, Feng ZHANG. Study on CO2 Absorption and Regeneration Property of Flue Gas From Methyldiethanolamine-Amine Mixture System [J]. Power Generation Technology, 2024, 45(3): 468-477. |
[2] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[3] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[4] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[5] | Rongrong ZHAI, Qing WEI, Lingjie FENG, Gexun SUN. Analysis of Energy Consumption Characteristics of Carbon Capture System in Coupled Membrane Condenser [J]. Power Generation Technology, 2023, 44(5): 667-673. |
[6] | Xiao KONG, Chuanwen ZHAO, Jian SUN, Yafei GUO, Yue PAN, Ping LU. Carbon Fixation Characteristics and Performance Enhancement of CO2 Mineralized All-solid Waste Alkali-activated Cementitious Materials [J]. Power Generation Technology, 2022, 43(4): 600-608. |
[7] | Hang YE, Ning HAO, Qi LIU. Review on Key Parameters and Characterization Technology of CO2 Sequestration Mechanism in Saline Aquifers [J]. Power Generation Technology, 2022, 43(4): 562-573. |
[8] | Zhenshan LI, Hu CHEN, Weicheng LI, Lei LIU, Ningsheng CAI. Research Status and Prospect of Chemical Looping Combustion Pilot Systems [J]. Power Generation Technology, 2022, 43(4): 544-561. |
[9] | Huanjun WANG, Niu LIU, Zhaofang ZHENG, Xia XING, Shiwang GAO, Lianbo LIU, Hongwei NIU, Dongfang GUO. Research Progress of Materials for Direct Capture of CO2 From Ambient Air [J]. Power Generation Technology, 2022, 43(4): 533-543. |
[10] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[11] | Lanhua LIU, Ruilin WANG, Hui HONG. Design of Calcium-based Carbon Capture System for Gas-Steam Combined Cycle Assisted by Solar Thermal Tower [J]. Power Generation Technology, 2021, 42(4): 517-524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||