Power Generation Technology ›› 2021, Vol. 42 ›› Issue (6): 643-652.DOI: 10.12096/j.2096-4528.pgt.21061
• Solar Thermal Power Generation Technology • Next Articles
Li WANG1(), Zhi ZHANG1, Yaolu SHI1(
), Chao XU2(
), Jie SUN1,*(
)
Received:
2021-05-20
Published:
2021-12-31
Online:
2021-12-23
Contact:
Jie SUN
Supported by:
CLC Number:
Li WANG, Zhi ZHANG, Yaolu SHI, Chao XU, Jie SUN. Research Progress of Parabolic Trough Solar Collector Based on Numerical Simulation[J]. Power Generation Technology, 2021, 42(6): 643-652.
1 | 孙蔚, 申洪, 侯金鸣, 等. 欧洲能源电力发展路线研究[J]. 发电技术, 2021, 42 (1): 94- 102. |
SUN W , SHEN H , HOU J M , et al. Research on European roadmap for energy and electrical technology[J]. Power Generation Technology, 2021, 42 (1): 94- 102. | |
2 | 申洪, 周勤勇, 刘耀, 等. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术, 2021, 42 (1): 8- 19. |
SHEN H , ZHOU Q Y , LIU Y , et al. Key technologies and prospects for the construction of global energy internet under the background of carbon neutral[J]. Power Generation Technology, 2021, 42 (1): 8- 19. | |
3 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 230. |
ZHANG Z Y , JU X , PAN X Y , et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J]. Power Generation Technology, 2020, 41 (3): 220- 230. | |
4 | 刘尧东, 张燕平, 万亮, 等. 基于Al2O3纳米流体的槽式太阳能热发电集热器传热建模及性能分析[J]. 发电技术, 2021, 42 (2): 230- 237. |
LIU Y D , ZHANG Y P , WAN L , et al. Heat transfer modelling and performance analysis of trough solar thermal power collector based on Al2O3 nanofluid[J]. Power Generation Technology, 2021, 42 (2): 230- 237. | |
5 |
CHENG Z D , HE Y L , CUI F Q , et al. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method[J]. Sol Energy, 2012, 86 (6): 1770- 1784.
DOI |
6 |
RAY S , TRIPATHY A K , SAHOO S S , et al. Performance analysis of receiver of parabolic trough solar collector: effect of selective coating, vacuum and semitransparent glass cover[J]. International Journal of Energy Research, 2018, 42 (13): 4235- 4249.
DOI |
7 |
TELES M D P R , ISMAILl K A R , ARABKOOHSAR A . A new version of a low concentration evacuated tube solar collector: optical and thermal investigation[J]. Solar Energy, 2019, 180, 324- 339.
DOI |
8 |
BELLOS E , KORRES D , TZIVANIDIS C , et al. Design, simulation and optimization of a compound parabolic collector[J]. Sustainable Energy Technologies and Assessments, 2016, 16, 53- 63.
DOI |
9 |
BELLOS E , TZIVANIDIS C , SAID Z . A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors[J]. Sustainable Energy Technologies and Assessments, 2020, 39, 100714.
DOI |
10 |
YILMAZ I H , MWESIGYE A , GOKSU TT . Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts[J]. Sustainable Energy Technologies and Assessments, 2020, 39, 100696.
DOI |
11 |
ANTONAIA A , CASTALDO A , ADDONIZIO M L , et al. Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature[J]. Solar Energy Materials and Solar Cells, 2010, 94 (10): 1604- 1611.
DOI |
12 |
GAO X H , GUO H X , ZHOU T H , et al. Optical properties and failure analysis of ZrC-ZrOx ceramic based spectrally selective solar absorbers deposited at a high substrate temperature[J]. Solar Energy Materials and Solar Cells, 2018, 176, 93- 99.
DOI |
13 |
LIU J , LEI D , LI Q . Vacuum lifetime and residual gas analysis of parabolic trough receiver[J]. Renew Energy, 2016, 86, 949- 954.
DOI |
14 |
ESPINOSA-RUEDA G , NAVARRO HERMOSO J L , MARTÍNEZ-SANZ N , et al. Vacuum evaluation of parabolic trough receiver tubes in a 50 MW concentrated solar power plant[J]. Solar Energy, 2016, 139, 36- 46.
DOI |
15 | 赵晴, 赵力, 王志, 等. 槽式太阳能集热管非均匀受热研究[J]. 太阳能学报, 2018, 39 (6): 1526- 1532. |
ZHAO Q , ZHAO L , WANG Z . Study of non-uniform heating of trough solar collector[J]. Acta Energiae Solaris Sinica, 2018, 39 (6): 1526- 1532. | |
16 | 王金平. 槽式太阳能光热电站关键技术及运行特性的研究[D]. 南京: 东南大学, 2017. |
WANG J P. Research on the key technologies and operational characteristics of parabolic trough solar power plant[D]. Nanjing: Southeast University, 2017. | |
17 |
LEI D Q , FU X Q , REN Y C , et al. Temperature and thermal stress analysis of parabolic trough receivers[J]. Renew Energy, 2019, 136, 403- 413.
DOI |
18 |
MWESIGYE A , BELLO-OCHENDE T , MEYER J P . Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts[J]. International Journal of Thermal Sciences, 2016, 99, 238- 257.
DOI |
19 | BELLOS E , TZIVANIDIS C , TSIMPOUKIS D . Multi-criteria evaluation of parabolic trough collector with internally finned absorbers[J]. Applied Energy, 2017, 205, 540- 561. |
20 | WANG Y J , LIU Q B , LEI J , et al. A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid[J]. Applied Thermal Engineering, 2014, 70 (1): 462- 476. |
21 | 王艳娟. 聚光太阳能与热化学反应耦合的发电系统研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2015. |
WANG Y J. Investigation on multiphysics coupling processes and system integration of the concentrated solar thermal energy[D]. Beijing: Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2015. | |
22 | ROLDÁN M I , VALENZUELA L , ZARZA E . Thermal analysis of solar receiver pipes with superheated steam[J]. Applied Energy, 2013, 103, 73- 84. |
23 | LI L , SUN J , LI Y S . Thermal load and bending analysis of heat collection element of direct-steam-generation parabolic-trough solar power plant[J]. Applied Thermal Engineering, 2017, 127, 1530- 1542. |
24 | HACHICHA A A , RODRÍGUEZ I , GHENAI C . Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation[J]. Applied Energy, 2018, 214, 152- 165. |
25 | WANG L , ZHANG Z , SUN J , et al. A trans-dimensional multi-physics coupled analysis method for direct-steam-generation parabolic-trough loop[J]. Applied Thermal Engineering, 2021, 193, 117011. |
26 | MWESIGYE A , HUAN Z , MEYER J P . Thermodynamic optimization of the performance of a parabolic trough receiver using synthetic oil-Al2O3 nanofluid[J]. Applied Energy, 2015, 156, 398- 412. |
27 | HACHICHA A A , SAID Z , RAHMAN S M A , et al. On the thermal and thermodynamic analysis of parabolic trough collector technology using industrial-grade MWCNT based nanofluid[J]. Renew Energy, 2020, 161, 1303- 1317. |
28 | ALLOUHI A , AMINE M B , SAIDUR R , et al. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications[J]. Energy Conversion and Management, 2018, 155, 201- 217. |
29 | MINEA A A , EL-MAGHLANY W M . Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison[J]. Renew Energy, 2018, 120, 350- 364. |
30 | GOOD P , AMBROSETTI G , PEDRETTI A , et al. A 1.2 MWth solar parabolic trough system based on air as heat transfer fluid at 500℃: engineering design, modelling, construction, and testing[J]. Solar Energy, 2016, 139, 398- 411. |
31 | QIU Y , LI M J , HE Y L , et al. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux[J]. Applied Thermal Engineering, 2017, 115, 1255- 1265. |
32 | 吴闽强. 液态铅铋槽式太阳能集热管设计及性能分析[D]. 合肥: 中国科学技术大学, 2018. |
WU M Q. Design and analysis of parabolic trough solar collector with lead-bismuth eutectic[D]. Hefei: University of Science and Technology of China, 2018. | |
33 | GONG B , WANG Z , LI Z , et al. Field measurements of boundary layer wind characteristics and wind loads of a parabolic trough solar collector[J]. Solar Energy, 2012, 86 (6): 1880- 1898. |
34 | NAEENI N , YAGHOUBI M . Analysis of wind flow around a parabolic collector (1) fluid flow[J]. Renewable Energy, 2007, 32 (11): 1898- 1916. |
35 | ZEMLER M K , BOHL G , RIOS O , et al. Numerical study of wind forces on parabolic solar collectors[J]. Renewable Energy, 2013, 60, 498- 505. |
36 | PAETZOLD J , COCHARD S , VASSALLO A , et al. Wind engineering analysis of parabolic trough solar collectors: the effects of varying the trough depth[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135, 118- 128. |
37 | ANDRE M , PENTEK M , BLETZINGER K U , et al. Aeroelastic simulation of the wind-excited torsional vibration of a parabolic[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165, 67- 78. |
38 | HACHICHA A A , RODRÍGUEZ I , CASTRO J , et al. Numerical simulation of wind flow around a parabolic trough solar collector[J]. Applied Energy, 2013, 107, 426- 437. |
39 | MIER-TORRECILLA M , HERRERA E , DOBLARÉ M . Numerical calculation of wind loads over solar collectors[J]. Energy Procedia, 2014, 49, 163- 173. |
40 | ANDRE M , MIER-TORRECILLA M , WÜCHNER R . Numerical simulation of wind loads on a parabolic trough solar collector using lattice Boltzmann and finite element methods[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 146, 185- 194. |
41 | ZHANG Z , SUN J , WANG L , et al. Multiphysics-coupled study of wind load effects on optical performance of parabolic trough collector[J]. Solar Energy, 2020, 207, 1078- 1087. |
42 | RIFFELMANNA K , RICHERTA T , NAVAA P , et al. Ultimate trough®: a significant step towards cost-competitive CSP[J]. Energy Procedia, 2014, 49 (9): 1831- 1839. |
43 | WINKELMANN U , KAMPER C , HOFFER R , et al. Wind actions on large-aperture parabolic trough solar collectors: wind tunnel tests and structural analysis[J]. Renewable Energy, 2020, 146, 2390- 2407. |
[1] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[2] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[3] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[4] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[5] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[6] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[7] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[8] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[9] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[10] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[11] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[12] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[13] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[14] | Wenjun KONG, Yansen ZHANG, Xiaoping TANG, Weikuo ZHANG. Study on Heat Production Characteristics of Lithium-ion Batteries for Large Capacity Energy Storage [J]. Power Generation Technology, 2022, 43(5): 801-809. |
[15] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1365
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 406
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||