Power Generation Technology ›› 2021, Vol. 42 ›› Issue (2): 218-229.DOI: 10.12096/j.2096-4528.pgt.20111
• New and Renewable Energy • Previous Articles Next Articles
Qian LIU(), Qianlei SHI(
), Kaixuan LI(
), Chao XU(
), Zhirong LIAO(
), Xing JU(
)
Received:
2020-10-20
Published:
2021-04-30
Online:
2021-04-29
Contact:
Xing JU
Supported by:
结构名称 | 尺寸 |
盖板和歧管层厚度/mm | 7 |
冷却液横向流入通道截面尺寸/(mm×mm) | 5×5 |
阳极绝缘/棋盘孔口层厚度/mm | 1 |
电池直径/mm | 18 |
电池高度/mm | 65 |
浸没冷却区高度/mm | 65 |
阴极绝缘/棋盘孔口层厚度/mm | 1 |
出口歧管和底板层厚度/mm | 7 |
Tab. 1 Design dimensions for each layer of battery cooling structure
结构名称 | 尺寸 |
盖板和歧管层厚度/mm | 7 |
冷却液横向流入通道截面尺寸/(mm×mm) | 5×5 |
阳极绝缘/棋盘孔口层厚度/mm | 1 |
电池直径/mm | 18 |
电池高度/mm | 65 |
浸没冷却区高度/mm | 65 |
阴极绝缘/棋盘孔口层厚度/mm | 1 |
出口歧管和底板层厚度/mm | 7 |
项目 | 生热量/W | |||
4 | 6 | 8 | 10 | |
电池整体体积生热率/ (W/cm3) | 0.214 8 | 0.362 7 | 0.483 7 | 0.604 6 |
发热中心体积生热率/ (W/cm3) | 3.367 9 | 5.051 9 | 6.737 2 | 8.421 2 |
放电倍率/C | 4.784 | 6.055 | 7.130 | 8.080 |
Tab. 2 Relationship between volume heat generation rate and discharge rate
项目 | 生热量/W | |||
4 | 6 | 8 | 10 | |
电池整体体积生热率/ (W/cm3) | 0.214 8 | 0.362 7 | 0.483 7 | 0.604 6 |
发热中心体积生热率/ (W/cm3) | 3.367 9 | 5.051 9 | 6.737 2 | 8.421 2 |
放电倍率/C | 4.784 | 6.055 | 7.130 | 8.080 |
材料 | 密度/(kg/m3) | 比热容/[J/(kg·K)] | 导热系数/[W/(m·K)] |
去离子水 | 998.2 | 4 182 | 0.60 |
铝 | 2 179.0 | 871 | 155.00 |
电池发热中心 | 7 930.0 | 500 | 16.00 |
绝缘层 | 1 000.0 | 1 200 | 0.19 |
电池主体部分 | 2 510.0 | 1 028 | 36.96(平行)/1.63(垂直) |
Tab. 3 Physical parameters of each part material
材料 | 密度/(kg/m3) | 比热容/[J/(kg·K)] | 导热系数/[W/(m·K)] |
去离子水 | 998.2 | 4 182 | 0.60 |
铝 | 2 179.0 | 871 | 155.00 |
电池发热中心 | 7 930.0 | 500 | 16.00 |
绝缘层 | 1 000.0 | 1 200 | 0.19 |
电池主体部分 | 2 510.0 | 1 028 | 36.96(平行)/1.63(垂直) |
时间/s | 时间步长/s | ||
0.1 | 0.2 | ||
100 | 33.176 | 33.183 | |
200 | 35.810 | 35.811 | |
300 | 37.299 | 37.300 | |
400 | 38.145 | 38.146 | |
500 | 38.621 | 38.624 | |
600 | 38.884 | 38.895 | |
700 | 39.021 | 39.047 | |
800 | 39.129 | 39.132 |
Tab. 4 Maximum temperature at different time steps ℃
时间/s | 时间步长/s | ||
0.1 | 0.2 | ||
100 | 33.176 | 33.183 | |
200 | 35.810 | 35.811 | |
300 | 37.299 | 37.300 | |
400 | 38.145 | 38.146 | |
500 | 38.621 | 38.624 | |
600 | 38.884 | 38.895 | |
700 | 39.021 | 39.047 | |
800 | 39.129 | 39.132 |
参数 | 网格1 | 网格2 | 网格3 | 偏差/% | |
网格2→1 | 网格2→3 | ||||
网格数目 | 18 888 | 45 652 | 78 684 | — | — |
平均温度/℃ | 38.626 | 39.235 | 39.857 | 1.55 | 1.59 |
最高温度/℃ | 32.255 | 32.840 | 33.451 | 1.78 | 1.86 |
Tab. 5 Verification of mesh independence of computational model
参数 | 网格1 | 网格2 | 网格3 | 偏差/% | |
网格2→1 | 网格2→3 | ||||
网格数目 | 18 888 | 45 652 | 78 684 | — | — |
平均温度/℃ | 38.626 | 39.235 | 39.857 | 1.55 | 1.59 |
最高温度/℃ | 32.255 | 32.840 | 33.451 | 1.78 | 1.86 |
1 | 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35 (10): 2767- 2775. |
YAN J D . Development status and prospect analysis of lithium ion battery[J]. Acta Aerophenica Sinica, 2014, 35 (10): 2767- 2775. | |
2 |
宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术, 2011, 35 (4): 1- 7.
DOI URL |
SONG Y H , YANG Y X , HU Z C . Current situation and development trend of electric vehicle batteries[J]. Power Grid Technology, 2011, 35 (4): 1- 7.
DOI URL |
|
3 | 罗晔. 韩国电化学储能系统研发进展[J]. 分布式能源, 2020, 5 (3): 29- 33. |
LUO Y . Research and development of electrochemical energy storage system in South Korea[J]. Distributed Energy, 2020, 5 (3): 29- 33. | |
4 | 金远, 韩甜, 韩鑫, 等. 锂离子电池热管理综述[J]. 储能科学与技术, 2019, 8 (S1): 23- 30. |
JIN Y , HAN T , HAN X , et al. Overview of thermal management of lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8 (S1): 23- 30. | |
5 |
RAO Z , WANG S . A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15, 4554- 4571.
DOI URL |
6 | 梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江电力, 2020, 39 (3): 75- 81. |
MEI J , ZHANG J , LIU S Y , et al. Development status of battery energy storage technology[J]. Zhejiang Electric Power, 2020, 39 (3): 75- 81. | |
7 | LIU J , LI H , LI W , et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering, 2011, 164, 114421. |
8 | 廖智伟. 液冷式18650动力锂电池组温度场分析及优化[M]. 重庆: 重庆交通大学, 2018: 1- 3. |
LIAO Z W . Temperature field analysis and optimization of liquid cooled 18650 lithium battery[M]. Chongqing: Chongqing Jiaotong University, 2018: 1- 3. | |
9 |
GRECO A , JIANG X , CAO D . An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J]. Journal of Power Sources, 2015, 278, 50- 68.
DOI |
10 |
ZHAO R , ZHANG S , LIU J , et al. A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system[J]. Journal of Power Sources, 2015, 299, 557- 577.
DOI |
11 |
WU W , WANG S , WU W , et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182, 262- 281.
DOI |
12 |
BAMDEZH M A , MOLAEIMANESH G R . Impact of system structure on the performance of a hybrid thermal management system for a Li-ion battery module[J]. Journal of Power Sources, 2020, 457, 227993.
DOI |
13 |
JIN X , LI J Q , ZHANG C N , et al. Researches on modeling and experiment of Li-ion battery PTC self-heating in electric vehicles[J]. Energy Procedia, 2016, 104, 62- 67.
DOI |
14 |
BASU S , HARIHARAN K S , KOLAKE S M , et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181, 1- 13.
DOI |
15 |
YANG W , ZHOU F , ZHOU H , et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Applied Thermal Engineering, 2020, 175, 115331.
DOI |
16 |
WANG T , TSENG K J , ZHAO J , et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134, 229- 238.
DOI URL |
17 | 彭影. 车用锂离子电池冷却方案优化设计[M]. 杭州: 浙江大学, 2015: 10- 11. |
PENG Y . Optimal design of cooling scheme for automotive Lithium ion batteries[M]. Hangzhou: Zhejiang University, 2015: 10- 11. | |
18 | 饶中浩. 基于固液相变传热介质的动力电池热管理研究[M]. 广州: 华南理工大学, 2013: 15- 18. |
RAO Z H . Research on power battery thermal management based on solid-liquid variable heat transfer medium[M]. Guangzhou: South China University of Technology, 2013: 15- 18. | |
19 |
WU W , ZHANG G , KE X , et al. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management[J]. Energy Conversion and Management, 2015, 101, 278- 284.
DOI |
20 |
SUN Z , FAN R , YAN F , et al. Thermal management of the lithium-ion battery by the composite PCM-Fin structures[J]. International Journal of Heat and Mass Transfer, 2019, 145, 118739.
DOI |
21 |
WENG J , OUYANG D , YANG X , et al. Optimization of the internal fin in a phase-change-material module for battery thermal management[J]. Applied Thermal Engineering, 2020, 167, 114698.
DOI |
22 |
QIAN Z , LI Y , RAO Z . Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126, 622- 631.
DOI |
23 |
MOHAMMED A H , EAMAEELI R , ALINIAGERDROUDBARI H , et al. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway[J]. Applied Thermal Engineering, 2019, 160, 114106.
DOI |
24 |
BAI F , CHEN M , SONG W , et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126, 17- 27.
DOI |
25 | 安治国, 赵琳, 陈星, 等. 流道布置对方形锂电池组温度场的影响[J/OL]. 电源学报, 2019: 1-10. [2020-09-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20191008.1111.006.html. |
AN Z G, ZHAO L, CHEN X, et al. Effect of runner layout on the temperature field of square lithium battery[J/OL]. Journal of Power Supply, 2019: 1-10. [2020-09-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20191008.1111.006.html. | |
26 |
姜水生, 何志坚, 文华. 基于电-热耦合模型的锂离子电池组热管理系统设计与优化[J]. 中国机械工程, 2018, 29, 1847- 1853.
DOI |
JIANG S S , HE Z J , WEN H . Design and optimization of the thermal management system of lithium ion battery based on the electric-thermal coupling model[J]. China Mechanical Engineering, 2018, 29, 1847- 1853.
DOI |
|
27 | HERMANN W A, KOHN S, BERDICHEVSKY E. Optimized cooling tube geometry for intimate thermal contact with cells[EB/OL]. (2008-12-24)[2020-09-01]. http://patentimages.storage.googleapis.com/6d/ac/a0/c74a48f8814d5f/WO2008156737A1.pdf. |
28 |
ZHAO C , SOUSA A C M , JIANG F . Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 129, 660- 670.
DOI |
29 | BESLING W F A, NIESSEN R A H, KLOOTWIJK J H, et al. Energy storage system: IB2009/054192[P]. 2010-04-15. |
30 |
LAN C , XU J , QIAO Y , et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering, 2016, 101, 284- 292.
DOI |
31 |
DAN D , YAO C , ZHANG Y , et al. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model[J]. Applied Thermal Engineering, 2019, 162, 114183.
DOI |
32 |
ZHANG W , QIU J , YIN X , et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165, 114571.
DOI |
33 |
SONG L , ZHANG H , YANG C . Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module[J]. International Journal of Heat and Mass Transfer, 2019, 133, 827- 841.
DOI |
34 |
WEI L T , JIA L , AN Z J , et al. Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates[J]. Journal of Thermal Science, 2020, 29 (4): 1001- 1009.
DOI |
35 |
CAO J , LUO M , FANG X , et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: an experimental and numerical study[J]. Energy, 2020, 191, 116565.
DOI |
36 |
JAGUEMONT J , OMAR N , VAN DEN BOSSCHE P , et al. Phase-change materials (PCM) for automotive applications: a review[J]. Applied Thermal Engineering, 2018, 132, 308- 320.
DOI |
37 |
SAFDARI M , AHMADI R , SADEGHZADEH S . Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management[J]. Energy, 2020, 193, 116840.
DOI |
38 |
WANG Y , ZHANG G , YANG X . Optimization of liquid cooling technology for cylindrical power battery module[J]. Applied Thermal Engineering, 2019, 162, 114200.
DOI |
39 |
KANG D , LEE P Y , YOO K , et al. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management[J]. Journal of Energy Storage, 2020, 27, 101017.
DOI |
40 |
ZHANG H , LI C , ZHANG R , et al. Thermal analysis of a 6s4p lithium-ion battery pack cooled by cold plates based on a multi-domain modeling framework[J]. Applied Thermal Engineering, 2020, 173, 115216.
DOI |
41 | JU X , XU C , ZHAO Y , et al. Numerical investigation of a novel manifold micro-pin-fin heat sink combining chessboard nozzle-jet concept for ultra-high heat flux removal[J]. International Journal of Heat and Mass Transfer, 2018, 126, 1206- 1218. |
42 | 柯玉超, 吴蕾, 方炳虎, 等. 动力电池包密封件密封与可靠性研究[C]//中国汽车工程学会. 2019中国汽车工程学会年会论文集(4). 北京: 中国汽车工程学会, 2019: 4. |
KE Y C, WU L, FANG B H, et al. Researching on sealing and reliability of rubber seal for battery pack[C]//China Society of Automotive Engineers. Proceedings of the 2019 Annual Meeting of China Society of Automotive Engineers(4). Beijing: China Society of Automotive Engineers, 2019: 4. | |
43 |
DRAKE S J , MARTIN M , WETZ D A , et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285, 266- 273.
DOI |
44 |
ZHANG H , WU X , WU Q , et al. Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration[J]. Applied Thermal Engineering, 2019, 159, 113968.
DOI |
45 |
YATES M , AKRAMI M , JAVADI A A . Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries[J]. Journal of Energy Storage, 2021, 33, 100913.
DOI |
46 | JEON D H , BAEK S M . Thermal modeling of cylindrical lithium ion battery during discharge cycle[J]. Energy Conversion and Management, 2011, 52 (8/9): 2973- 2981. |
[1] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[2] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[3] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[4] | Deyang GAO, Zhongyi JIANG, Kai ZHANG, Jinghui MENG. Research on Performance Optimization of Semiconductor Thermoelectric Generaor Based on Phase Change Material [J]. Power Generation Technology, 2023, 44(6): 842-849. |
[5] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[6] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[7] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[8] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[9] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[10] | Wenjun KONG, Yansen ZHANG, Xiaoping TANG, Weikuo ZHANG. Study on Heat Production Characteristics of Lithium-ion Batteries for Large Capacity Energy Storage [J]. Power Generation Technology, 2022, 43(5): 801-809. |
[11] | Xiaoguang CHEN, Xiuyuan YANG, Zhenlin WANG, Haoyang WANG. Energy Storage Capacity Allocation Scheme of Wind Farm Considering Multi-Objective Optimization Model [J]. Power Generation Technology, 2022, 43(5): 718-730. |
[12] | Zexu WANG, Kehan HE, Chen SUN, Kaixuan LI, Xing JU. Research on Battery Thermal Management of Pouch Cell Using a Phase Change Material-Based Thermal Switch [J]. Power Generation Technology, 2022, 43(5): 810-822. |
[13] | Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch [J]. Power Generation Technology, 2022, 43(2): 328-340. |
[14] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[15] | Chunxi DAI, Ping LIANG, Deyong CHE, Haiting LIU. Study on Flow Characteristics in Honeycomb Tube Wet Electrostatic Precipitator [J]. Power Generation Technology, 2022, 43(1): 155-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||