Power Generation Technology ›› 2022, Vol. 43 ›› Issue (1): 83-91.DOI: 10.12096/j.2096-4528.pgt.20114
• Energy Storage • Previous Articles Next Articles
Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI
Received:
2021-05-21
Published:
2022-02-28
Online:
2022-03-18
Supported by:
CLC Number:
Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts[J]. Power Generation Technology, 2022, 43(1): 83-91.
参数 | 数值 |
---|---|
壳内径/长度/厚度 | 60/400/5 |
管内径/厚度 | 12.5/1.5 |
翅片高度/厚度 | 12/2 |
Tab. 1 Geometric dimensions of phase change heat storage module in heat storage system
参数 | 数值 |
---|---|
壳内径/长度/厚度 | 60/400/5 |
管内径/厚度 | 12.5/1.5 |
翅片高度/厚度 | 12/2 |
热物性 | PCM1 | PCM2 | PCM3 |
---|---|---|---|
固相线温度/K | 494.15 | 463.75 | 415.59 |
液相线温度/K | 509.15 | 475.85 | 423.25 |
潜热值/(J·g-1) | 102.10 | 250.10 | 51.63 |
导热系数/ (W·m-1·K-1) | 0.76(固相) | 0.74(固相) | 0.99(固相) |
0.45(液相) | 0.48(液相) | 0.56(液相) | |
比热容/ (J·kg-1·K-1) | 399.33+ 2.193 4T | 890.323 4+1.564T(固相) | 291.33+ 2.661 8T |
-14 195.743+60.478T- 0.055 79T2(液相) | |||
密度/(kg·m-3) | 2 074 | 1 994 | 2 061 |
Tab. 2 Thermophysical properties of three PCMs
热物性 | PCM1 | PCM2 | PCM3 |
---|---|---|---|
固相线温度/K | 494.15 | 463.75 | 415.59 |
液相线温度/K | 509.15 | 475.85 | 423.25 |
潜热值/(J·g-1) | 102.10 | 250.10 | 51.63 |
导热系数/ (W·m-1·K-1) | 0.76(固相) | 0.74(固相) | 0.99(固相) |
0.45(液相) | 0.48(液相) | 0.56(液相) | |
比热容/ (J·kg-1·K-1) | 399.33+ 2.193 4T | 890.323 4+1.564T(固相) | 291.33+ 2.661 8T |
-14 195.743+60.478T- 0.055 79T2(液相) | |||
密度/(kg·m-3) | 2 074 | 1 994 | 2 061 |
热物性 | 导热油 | 空气 | 不锈钢 | 玻璃棉 | |
---|---|---|---|---|---|
553 K | 353 K | ||||
导热系数/(W·m-1·K-1) | 0.100 6 | 0.114 6 | 0.024 2 | 18.000 0 | 0.043 0 |
比热容/(J·kg-1·K-1) | 2 380.0 | 1 780.0 | 1 006.4 | 502.0 | 750.0 |
密度/(kg·m-3) | 849.000 | 966.500 | 0.854 | 7 930.000 | 30.000 |
Tab. 3 Thermophysical properties of thermal oil, air, stainless steel, and glass wool
热物性 | 导热油 | 空气 | 不锈钢 | 玻璃棉 | |
---|---|---|---|---|---|
553 K | 353 K | ||||
导热系数/(W·m-1·K-1) | 0.100 6 | 0.114 6 | 0.024 2 | 18.000 0 | 0.043 0 |
比热容/(J·kg-1·K-1) | 2 380.0 | 1 780.0 | 1 006.4 | 502.0 | 750.0 |
密度/(kg·m-3) | 849.000 | 966.500 | 0.854 | 7 930.000 | 30.000 |
工况 | 翅片高度/mm | 翅片数量/个 | ||
---|---|---|---|---|
PCM1 | PCM2 | PCM3 | ||
1 | 12 | 4 | 4 | 4 |
2 | 12 | 4 | 8 | 0 |
3 | 12 | 2 | 10 | 0 |
Tab. 4 Three conditions of even and uneven fin number
工况 | 翅片高度/mm | 翅片数量/个 | ||
---|---|---|---|---|
PCM1 | PCM2 | PCM3 | ||
1 | 12 | 4 | 4 | 4 |
2 | 12 | 4 | 8 | 0 |
3 | 12 | 2 | 10 | 0 |
工况 | 翅片数量/个 | 翅片高度/mm | ||
---|---|---|---|---|
PCM1 | PCM2 | PCM3 | ||
1 | 4 | 12 | 12 | 12 |
4 | 4 | 12 | 14 | 10 |
5 | 4 | 12 | 16 | 8 |
Tab. 5 Three cases of even and uneven fin height
工况 | 翅片数量/个 | 翅片高度/mm | ||
---|---|---|---|---|
PCM1 | PCM2 | PCM3 | ||
1 | 4 | 12 | 12 | 12 |
4 | 4 | 12 | 14 | 10 |
5 | 4 | 12 | 16 | 8 |
1 | 魏高升,邢丽婧,杜小泽,等 .太阳能热发电系统相变储热材料选择及研发现状[J].中国电机工程学报,2014,34(3):325-335. |
WEI G S, XING L J, DU X Z,et al .Research status and selection of phase change thermal energy storage materials for CSP systems[J].Proceedings of the CSEE,2014,34(3):325-335. | |
2 | 张叶龙,宋鹏飞,周伟,等 .基于复合相变储热材料的电热储能系统[J].储能科学与技术,2017,6(6):1250-1256. doi:10.12028/j.issn.2095-4239.2017.0080 |
ZHANG Y L, SONG P F, ZHOU W,et al .Electrical heating systems with heat storage using composite phase change materials[J].Energy Storage Science and Technology,2017,6(6):1250-1256. doi:10.12028/j.issn.2095-4239.2017.0080 | |
3 | CSPPLAZA光热发电网 .内蒙古丰泰热电联产机组新建中温相变储热装置即将调试[EB/OL].(2017-10-20)[2020-09-01].. doi:10.13188/2332-4139.s100001 |
CSPPLAZA Photothermal Power Generation Network .New middle temperature phase change heat storage device for Inner Mongolia Fengtai cogeneration unit is about to be debugged[EB/OL].(2017-10-20)[2020-09-01].. doi:10.13188/2332-4139.s100001 | |
4 | 李立新,周宇昊,郑文广 .能源转型背景下分布式能源技术发展前景[J].发电技术,2020,41(6):571-577. doi:10.12096/j.2096-4528.pgt.20116 |
LI L X, ZHOU Y H, ZHENG W G .Development prospect of distributed energy technology under the background of energy transformation[J].Power Generation Technology,2020,41(6):571-577. doi:10.12096/j.2096-4528.pgt.20116 | |
5 | 赵新波,李传常,谢宝珊,等 .熔融盐/金属复合相变储热材料的研究进展[J].中国材料进展,2019,38(12):1177-1185. doi:10.7502/j.issn.16743962.201807018 |
ZHAO X B, LI C C, XIE B S,et al .Research progress of molten salt/metal composite phase change materials for thermal energy storage[J].Materials China,2019,38(12):1177-1185. doi:10.7502/j.issn.16743962.201807018 | |
6 | 胡康,徐飞,陈磊,等 .利用相变储热提升电力系统可再生能源消纳[J].工程热物理学报,2018,39(1):1-7. |
HU K, XU F, CHEN L,et al .Improve the integration of renewable energy sources into power system by the usage of phase-change heat storage[J].Journal of Engineering Thermophysics,2018,39(1):1-7. | |
7 | 魏高升,王遥,杨彦平,等 .基于孔尺度的泡沫金属强化相变储热材料传热性能数值模拟[J].发电技术,2018,39(2):158-164. doi:10.12096/j.2096-4528.pgt.2018.025 |
WEI G S, WANG Y, YANG Y P,et al .Pore-scale numerical simulation of heat transfer enhancement of phase change thermal energy storage materials with porous foam metals[J].Power Generation Technology,2018,39(2):158-164. doi:10.12096/j.2096-4528.pgt.2018.025 | |
8 | ZHANG Z, YUAN Y, ALELYANI S,et al .Thermophysical properties enhancement of ternary carbonates with carbon materials for high-temperature thermal energy storage[J].Solar Energy,2017,155:661-669. doi:10.1016/j.solener.2017.07.010 |
9 | HOSSEINI M J, RANJBAR A A, RAHIMI M,et al .Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems[J].Energy and Buildings,2015,99:263-272. doi:10.1016/j.enbuild.2015.04.045 |
10 | LOHRASBI S, GORJI-BANDPY M, GANJI D D .Thermal penetration depth enhancement in latent heat thermal energy storage system in the presence of heat pipe based on both charging and discharging processes[J].Energy Conversion and Management,2017,148:646-667. doi:10.1016/j.enconman.2017.06.034 |
11 | LIU M, TAY N H S, BELUSKO M,et al .Investigation of cascaded shell and tube latent heat storage systems for solar tower power plants[J].Energy Procedia,2015,69:913-924. doi:10.1016/j.egypro.2015.03.175 |
12 | 程素雅,陈宝明,郭梦雪,等 .翅片排布方式对矩形腔相变材料熔化的影响[J].煤气与热力,2020,40(4):15-20. |
CHENG S Y, CHEN B M, GUO M X,et al .Effect of fin arrangement on melting of phase change materials in rectangular cavity[J].Gas and Heat,2020,40(4):15-20. | |
13 | 陈善友,黄坤荣,王俊,等 .非等高翅片平板热管散热器仿真研究与优化设计[J].机械工程师,2020(4):11-13. |
CHEN S Y, HUANG K Y, WANG J,et al .Simulation research and optimization design of non-equal height fin flat heat pipe radiator[J].Mechanical Engineer,2020(4):11-13. | |
14 | SEENIRAJ R V, NARASIMHAN N L .Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J].Solar Energy,2008,82(6):535-542. doi:10.1016/j.solener.2007.11.001 |
15 | SERRANO-LÓPEZ R, FRADERA J, CUESTA-LÓPEZ S .Molten salts database for energy applications[J].Chemical Engineering and Processing Process Intensification,2013,73:87-102. doi:10.1016/j.cep.2013.07.008 |
16 | OMOTANI T, NAGASHIMA A .Thermal conductivity of molten salts,HTS and the LiNO3-NaNO3 system,using a modified transient hot-wire method[J].Journal of Chemical and Engineering Data,1984,29(1):1-3. doi:10.1021/je00035a001 |
17 | IVERSON B D, BROOME S T, KRUIZENGA A M,et al .Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase[J].Solar Energy,2012,86(10):2897-2911. doi:10.1016/j.solener.2012.03.011 |
18 | ZHOU D, EAMES P .Thermal characterisation of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures[J].Solar Energy Materials and Solar Cells,2016,157:1019-1025. doi:10.1016/j.solmat.2016.08.017 |
19 | LONGEON M, SOUPART A, FOURMIGUÉ J F,et al .Experimental and numerical study of annular PCM storage in the presence of natural convection[J].Applied Energy,2013,112:175-184. doi:10.1016/j.apenergy.2013.06.007 |
[1] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[2] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[3] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[4] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[5] | Deyang GAO, Zhongyi JIANG, Kai ZHANG, Jinghui MENG. Research on Performance Optimization of Semiconductor Thermoelectric Generaor Based on Phase Change Material [J]. Power Generation Technology, 2023, 44(6): 842-849. |
[6] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[7] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[8] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[9] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[10] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[11] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[12] | Wenjun KONG, Yansen ZHANG, Xiaoping TANG, Weikuo ZHANG. Study on Heat Production Characteristics of Lithium-ion Batteries for Large Capacity Energy Storage [J]. Power Generation Technology, 2022, 43(5): 801-809. |
[13] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[14] | Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch [J]. Power Generation Technology, 2022, 43(2): 328-340. |
[15] | Yaonan GAO, Haifeng CHEN, Jianyong WANG. Thermodynamic Analysis of a New Combined Cooling, Heating and Power System Using CO2 Working Fluid [J]. Power Generation Technology, 2022, 43(1): 131-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||