Power Generation Technology ›› 2022, Vol. 43 ›› Issue (5): 810-822.DOI: 10.12096/j.2096-4528.pgt.22113
• New Energy Storage Ontology Technology • Previous Articles
Zexu WANG, Kehan HE, Chen SUN, Kaixuan LI, Xing JU
Received:
2022-07-01
Published:
2022-10-31
Online:
2022-11-04
Supported by:
CLC Number:
Zexu WANG, Kehan HE, Chen SUN, Kaixuan LI, Xing JU. Research on Battery Thermal Management of Pouch Cell Using a Phase Change Material-Based Thermal Switch[J]. Power Generation Technology, 2022, 43(5): 810-822.
参数 | Li x C6(负极) | LiMn2O4(正极) |
---|---|---|
电极固相扩散系数/(cm2/s) | 3.9×10-10 | 10×10-9 |
交换电流密度/(mA/cm2) | 0.11 | 0.08 |
最大电解质盐浓度/(mol/dm3) | 26.39 | 22.86 |
粒子半径/µm | 2.5 | 1.7 |
电极体积分数 | 0.384 | 0.43 |
电解质体积分数 | 0.444 | 0.4 |
初始电解质盐浓度/(mol/m3) | 22 055 | 4 001 |
电极电导率/(S/cm) | 1.0 | 0.038 |
Tab. 1 Main parameters of positive and negative electrode materials for lithium-ion battery
参数 | Li x C6(负极) | LiMn2O4(正极) |
---|---|---|
电极固相扩散系数/(cm2/s) | 3.9×10-10 | 10×10-9 |
交换电流密度/(mA/cm2) | 0.11 | 0.08 |
最大电解质盐浓度/(mol/dm3) | 26.39 | 22.86 |
粒子半径/µm | 2.5 | 1.7 |
电极体积分数 | 0.384 | 0.43 |
电解质体积分数 | 0.444 | 0.4 |
初始电解质盐浓度/(mol/m3) | 22 055 | 4 001 |
电极电导率/(S/cm) | 1.0 | 0.038 |
项目 | 导热系数/[W/(m⋅K)] | 厚度/ µm | 密度/ (kg/cm3) | 比热/ [J/(kg⋅K)] |
---|---|---|---|---|
正极 | 1.508 | 55 | 2 328.5 | 1 269.21 |
负极 | 1.04 | 55 | 1 347.33 | 1 437.4 |
正极集流体 | 170 | 10 | 2 770 | 875 |
负极集流体 | 398 | 7 | 8 933 | 385 |
隔膜 | 0.344 | 30 | 1 008.98 | 1 978.16 |
Tab. 2 Thermophysical parameters of battery materials
项目 | 导热系数/[W/(m⋅K)] | 厚度/ µm | 密度/ (kg/cm3) | 比热/ [J/(kg⋅K)] |
---|---|---|---|---|
正极 | 1.508 | 55 | 2 328.5 | 1 269.21 |
负极 | 1.04 | 55 | 1 347.33 | 1 437.4 |
正极集流体 | 170 | 10 | 2 770 | 875 |
负极集流体 | 398 | 7 | 8 933 | 385 |
隔膜 | 0.344 | 30 | 1 008.98 | 1 978.16 |
参数 | 数值 |
---|---|
1 C倍率放电电流密度/(A/m2) | 12 |
电池导热系数/[W/(m⋅K)] | X方向:29.557 |
Y方向:0.897 | |
Z方向:29.557 | |
电池密度/(kg/m3) | 2 055.2 |
电池比热/[J/(kg⋅K)] | 1 399.1 |
Tab. 3 Lithium-ion battery parameters
参数 | 数值 |
---|---|
1 C倍率放电电流密度/(A/m2) | 12 |
电池导热系数/[W/(m⋅K)] | X方向:29.557 |
Y方向:0.897 | |
Z方向:29.557 | |
电池密度/(kg/m3) | 2 055.2 |
电池比热/[J/(kg⋅K)] | 1 399.1 |
材料 | 导热系数W/(m⋅K) | 密度/ (kg/m3) | 比热/ [(J/(kg⋅K)] | 潜热/ (kJ/kg) |
---|---|---|---|---|
硬脂酸 | 1.6 | 1 007(s) 862(l) | 1 760(s) 2 270(l) | 211.6 |
空气 | 0.025 9 | 1.205 | 1.005 | — |
铜 | 8 900 | 401 | 390 | — |
Tab. 4 Thermophysical properties of phase change material and other materials
材料 | 导热系数W/(m⋅K) | 密度/ (kg/m3) | 比热/ [(J/(kg⋅K)] | 潜热/ (kJ/kg) |
---|---|---|---|---|
硬脂酸 | 1.6 | 1 007(s) 862(l) | 1 760(s) 2 270(l) | 211.6 |
空气 | 0.025 9 | 1.205 | 1.005 | — |
铜 | 8 900 | 401 | 390 | — |
参数 | 网格1 | 网格2 | 网格3 |
---|---|---|---|
网格数目 | 29 000 | 47 840 | 86 260 |
平均温度/℃ | 56.062 5 | 56.062 4 | 56.062 5 |
最高温度/℃ | 56.385 | 56.392 | 56.395 |
Tab. 5 Grid independence test
参数 | 网格1 | 网格2 | 网格3 |
---|---|---|---|
网格数目 | 29 000 | 47 840 | 86 260 |
平均温度/℃ | 56.062 5 | 56.062 4 | 56.062 5 |
最高温度/℃ | 56.385 | 56.392 | 56.395 |
步长 | 时间步长 | ||
---|---|---|---|
1(1 s) | 2(0.5 s) | 3(0.25 s) | |
平均温度/℃ | 56.054 | 56.062 | 56.061 |
最高温度/℃ | 56.384 | 56.392 | 56.392 |
Tab. 6 Time step independence test
步长 | 时间步长 | ||
---|---|---|---|
1(1 s) | 2(0.5 s) | 3(0.25 s) | |
平均温度/℃ | 56.054 | 56.062 | 56.061 |
最高温度/℃ | 56.384 | 56.392 | 56.392 |
1 | CHEN K, CHEN Y, LI Z,et al .Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J].International Journal of Heat and Mass Transfer,2018,127:393-401. doi:10.1016/j.ijheatmasstransfer.2018.06.131 |
2 | JIANG Z Y, QU Z G .Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle:a comprehensive numerical study[J].Applied Energy, 2019,242:378-392. doi:10.1016/j.apenergy.2019.03.043 |
3 | 刘倩,石千磊,李凯璇,等 .锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究[J].发电技术,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 |
LIU Q, SHI Q L, LI K X,et al .Thermal management of submerged cooling in lithium-ion batteries combined with tessellated topological shunt structure[J].Power Generation Technology,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 | |
4 | LIU J W, LI H, LI W Y,et al .Thermal characteristics of power battery pack with liquid-based thermal management[J].Applied Thermal Engineering,2020,164:114421. doi:10.1016/j.applthermaleng.2019.114421 |
5 | 廖智伟 .液冷式18650动力锂电池组温度场分析及优化[D].重庆:重庆交通大学,2018. |
LIAO Z W .Analysis and optimization of temperature field of liquid-cooled 18650 power lithium battery pack[D].Chongqing:Chongqing Jiaotong University,2018. | |
6 | GRECO A, XI J, CAO D .An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J].Journal of Power Sources,2015,278:50-68. doi:10.1016/j.jpowsour.2014.12.027 |
7 | WANG R S .A review of power battery thermal energy management[J].Renewable and Sustainable Energy Reviews,2011,15(9):4554-4571. doi:10.1016/j.rser.2011.07.096 |
8 | 王波,陈东东,张锦霞,等 .基于时空分布映射的大规模电池健康状态研究[J].智慧电力,2022,50(6):85-91. doi:10.3969/j.issn.1673-7598.2022.06.014 |
WANG B, CHEN D D, ZHANG J X,et al .Large-scale battery health state prediction based on spatio-temporal distribution mapping[J].Smart Power,2022,50(6):85-91. doi:10.3969/j.issn.1673-7598.2022.06.014 | |
9 | 刘俊华,张启超,李程,等 .磷酸铁锂电池模组健康度快速评估方法研究[J].电网与清洁能源,2020,36(10):112-118. doi:10.3969/j.issn.1674-3814.2020.10.018 |
LIU J H, ZHANG Q C, LI C,et al .A study on rapid evaluation methods of the SOH of the health of lithium iron phosphate battery module[J].Power Grid and Clean Energy,2020,36(10):112-118. doi:10.3969/j.issn.1674-3814.2020.10.018 | |
10 | 李勇琦,郑耀东,董缇,等 .退役锂离子动力电池储能系统风冷热管理仿真[J].电力系统保护与控制,2021,49(12):8-15. |
LI Y Q, ZHENG Y D, DONG T,et al .Wind cooling heat management simulation of a retired lithium ion battery energy storage system[J].Power System Protection and Control,2021,49(12):8-15. | |
11 | 郎春艳 .低温环境下锂离子电池组热管理系统研究[D].广州:华南理工大学,2016. |
LANG C Y .A study on the performance of lithium-ion battery pack thermal management system in case of low-temperature[D].Guangzhou:South China University of Technology,2016. | |
12 | DINESH K S, ANEESH P .A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric vehicles[J].Journal of Energy Storage,2021,41:102885. doi:10.1016/j.est.2021.102885 |
13 | BAMDEZH M A, MOLAEIMANESH G R .Impact of system structure on the performance of a hybrid thermal management system for a Li-ion battery module[J].Journal of Power Sources,2020,457:227993. doi:10.1016/j.jpowsour.2020.227993 |
14 | 冯世通 .风冷式动力电池组热管理系统及结构优化分析[D].重庆:重庆交通大学,2019. |
FENG S T .Analysis of thermal management system and structure optimization of air-cooled power battery[D].Chongqing:Chongqing Jiaotong University,2019. | |
15 | 薛超坦 .基于液冷的纯电动汽车锂电池热管理研究[D].长春:吉林大学,2017. |
XUE C T .Research on the thermal management of pure electric vehicle lithium battery based on liquid cooling[D].Changchun:Jilin University,2017. | |
16 | 吴博 .电动汽车锂电池冷却方式综述[J].汽车文摘,2020(11):9-14. |
WU B .Summary of cooling methods of lithium battery for electric vehicle[J].Automotive Digest,2020(11):9-14. | |
17 | 白帆飞,宋文吉,陈明彪,等 .锂离子电池组热管理系统研究现状[J].电池,2016,46(3):168-171. doi:10.3969/j.issn.1001-1579.2016.03.014 |
BAI F F, SONG W J, CHEN M B,et al .Current status of research on thermal management system of lithium-ion battery pack[J].Battery,2016,46(3):168-171. doi:10.3969/j.issn.1001-1579.2016.03.014 | |
18 | 闵德平 .电池组结构设计及其热管理液流传热强化研究[D].长春:吉林大学,2016. |
MIN D P .Research on the structural design of battery pack and its thermal management liquid flow heat transfer enhancement[D].Changchun:Jilin University,2016. | |
19 | PRANJALI R T, MAHENDRA M G, SANDEEP S J .Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct[J].Journal of Energy Storage,2022,48:104041. doi:10.1016/j.est.2022.104041 |
20 | RONG G, LU L .Heat dissipation analysis and optimization of lithium-ion batteries with a novel parallel-spiral serpentine channel liquid cooling plate[J].International Journal of Heat and Mass Transfer,2022,189:122706. doi:10.1016/j.ijheatmasstransfer.2022.122706 |
21 | MOHSEN A, THEODOROS K S, JORIS J,et al .A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J].Applied Thermal Engineering,2021,198:117503. doi:10.1016/j.applthermaleng.2021.117503 |
22 | MAHDI T, AMIRHOSEIN S, MEHRDAD K,et al .Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath[J].Journal of Energy Storage,2021,41:102910. doi:10.1016/j.est.2021.102910 |
23 | CAO J, LUO M, FANG X,et al .Liquid cooling with phase change materials for cylindrical Li-ion batteries:an experimental and numerical study[J].Energy,2020,191:116565. doi:10.1016/j.energy.2019.116565 |
24 | LEI S, SHI Y, CHEN G .A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling[J].Applied Thermal Engineering,2019,168:114792. doi:10.1016/j.applthermaleng.2019.114792 |
25 | GEOFF W, TOMOHIDE Y, CHRISTIAN M,et al .Thermal diodes, regulators, and switches:Physical mechanisms and potential applications[J].Applied Physics Reviews,2017,156:041304. doi:10.1063/1.5001072 |
26 | WANG X J, TSO C Y, Traipattanakul B,et al .Development of a phase change material (PCM)-based thermal switch[J].HKIE Transactions,2017,24:107-112. doi:10.1080/1023697x.2017.1312560 |
27 | SHI L, HU Y W, HE Y R .Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid[J].Nano Energy,2020,71:104582. doi:10.1016/j.nanoen.2020.104582 |
28 | 李畏 .基于低温制冷机和热开关的低温温度计全自动标定系统[D].上海:上海交通大学, 2018. doi:10.1007/s12204-018-1959-0 |
LI W .Development of automatic calibration system for low temperature thermometers based on cryocooler and thermal switch[D].Shanghai:Shanghai jiaotong university,2018. doi:10.1007/s12204-018-1959-0 | |
29 | 欧强 .一种采用热开关的温差发电系统的仿真与实验研究[D].重庆:重庆大学,2013. doi:10.1016/j.egypro.2014.12.198 |
OU Q .Simulation and experimental study on a thermoelectric generation system using thermal switch[D].Chongqing:Chongqing University,2013. doi:10.1016/j.egypro.2014.12.198 | |
30 | 党舒俊 .基于热开关的光伏/温差联合发电装置设计及性能分析[D].哈尔滨:东北农业大学,2019. |
DANG S J .Design and performance analysis of PV/TE hybrid power generation device based on thermal switch[D].Harbin:Northeast Agricultural University,2019. | |
31 | HAO M, LI J, PAEK S,et al .Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy[J].Nature Energy,2018,3(10):899-906. doi:10.1038/s41560-018-0243-8 |
32 | 凌子夜 .基于膨胀石墨基复合相变材料的动力电池热管理系统性能研究[D].广州:华南理工大学,2016. |
LING Z Y .Performance investigation of the power battery thermal management system using expanded graphite based composite phase change materials[D].Guangzhou:South China University of Technology,2016. | |
33 | 何淋 .基于导热硅胶/相变材料复合组件的电池热管理的研究[D].广州:广东工业大学,2020. |
HE L .Study on thermal management of battery based on thermal conductive silica gel/phase change material composite[D].Guangzhou:Guangdong University of Technology,2020. | |
34 | BEAUPERE N, SOUPREMANIEN U, ZALEWSKI L .Nucleation triggering methods in supercooled phase change materials (PCM):a review[J].Thermochimica Acta,2018,670:184-201. doi:10.1016/j.tca.2018.10.009 |
35 | 刘欣,高学农,方玉堂 .相变储热材料Na2SO4⋅10H2O的过冷和相分离研究[J].节能技术,2012,30(6):499-503. |
LIU X, GAO X N, FANG Y T .Review on Supercooling and phase separation occurring of Na2SO4⋅10H2O[J].Energy Saving Technology,2012,30(6):499-503. | |
36 | 姜龙,王鹏,张宝云,等 .有机相变储能材料的研究进展[J].化学工程与装备,2011(3):142-143. |
JIANG L, WANG P, ZHANG B Y,et al .Research progress of organic phase change energy storage materials[J].Chemical Engineering and Equipment,2011(3):142-143. | |
37 | 尹少武,康鹏,韩嘉维,等 .基于相变材料的锂离子电池热管理性能研究[J/OL].化工进展:1-15[2022-02-22].DOI:10.16085/j.issn.1000-6613.2021-2553. |
YIN S W, KANG P, HAN J W,et al .Thermal management performance of lithium-ion battery based on phase change materials[J/OL].Chemical Progress:1-15[2022-02-22].DOI:10.16085/j.issn.1000-6613.2021-2553. | |
38 | 罗明昀,凌子夜,方晓明,等 .基于相变储热技术的电池热管理系统研究进展[J/OL].化工进展:1-21[2022-02-22].DOI:10.16085/j.issn.1000-6613.2021-2278. |
LUO M Y, LING Z Y, FANG X M, et al .Research progress of battery thermal management system based on phase change heat storage technology[J/OL].Chemical Progress:1-21[2022-02-22].DOI:10.16085/j.issn.1000-6613.2021-2278. | |
39 | 金露,谢鹏,赵彦琦,等 .基于相变材料的电动汽车电池热管理研究进展[J].材料导报,2021,35(21):21113-21126. |
JIN L, XIE P, ZHAO Y Q,et al . Research progress on phase change material based thermal management system of EV batteries[J].Material Guide,2021,35(21):21113-21126. | |
40 | MAAN A Z, IBRAHIM D, MARC A R .Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles[J].Electrochimica Acta,2017, 247:171-182. doi:10.1016/j.electacta.2017.06.162 |
41 | FARID B, AMIR F, GHOLAM-ABBAS N . Electrochemical-thermal modeling to evaluate active thermal management of a Lithium-ion battery module[J].Electrochimica Acta,2017,254:59-71. doi:10.1016/j.electacta.2017.09.084 |
42 | DOYLE M .Comparison of modeling predictions with experimental data from plastic lithium ion cells[J].Journal of Electrochemical Society,143(6):1890-1903. doi:10.1149/1.1836921 |
43 | 朱志贤 .锂离子电池热效应分析及散热优化设计[D].北京:北京交通大学,2019. |
ZHU Z X .Thermal analysis and heat dissipation optimization design of Lithium-ion batteries[D].Beijing:Beijing Jiaotong University,2019. |
[1] | Deyang GAO, Zhongyi JIANG, Kai ZHANG, Jinghui MENG. Research on Performance Optimization of Semiconductor Thermoelectric Generaor Based on Phase Change Material [J]. Power Generation Technology, 2023, 44(6): 842-849. |
[2] | Xuebo GUO, Liangchi FAN, Zhenjing XU, You LI, Jun LIN, Lin CHEN. Research and Application Progress of Phase Change Thermal Energy Storage Materials for Energy Saving and Carbon Reduction [J]. Power Generation Technology, 2023, 44(2): 201-212. |
[3] | Jiahui ZHAO, Liting TIAN, Lin CHENG. Review on State Estimation and Remaining Useful Life Prediction Methods for Lithium-ion Battery [J]. Power Generation Technology, 2023, 44(1): 1-17. |
[4] | Shuaishuai YAN, Yang LU, Wenhui HOU, Kai LIU. Smart Separator Materials of Intrinsic Safe Lithium Battery for Large-scale Electric Energy Storge [J]. Power Generation Technology, 2022, 43(5): 792-800. |
[5] | Ning WANG, Zhiqiang CHEN, Mingyi LIU, Peng ZHANG, Xi CAO, Zeyu LU, Haodong LEI, Chuanzhao CAO, Xiao YAN, Guopeng ZHOU. Health Status Assessment of Lithium-ion Battery Based on Fuzzy Comprehensive Evaluation [J]. Power Generation Technology, 2022, 43(5): 784-791. |
[6] | Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch [J]. Power Generation Technology, 2022, 43(2): 328-340. |
[7] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[8] | Yihuan LI, Kang LI, James YU. Estimation Approaches for States of Charge and Health of Lithium-ion Battery [J]. Power Generation Technology, 2021, 42(5): 537-546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||