Power Generation Technology ›› 2021, Vol. 42 ›› Issue (1): 94-102.DOI: 10.12096/j.2096-4528.pgt.20088
• Power System Planning • Previous Articles Next Articles
Wei SUN1,2(), Hong SHEN1,2, Jinming HOU1,2, Qinyong ZHOU3(
), Yantao ZHANG3
Received:
2020-09-25
Published:
2021-02-28
Online:
2021-03-12
Supported by:
CLC Number:
Wei SUN, Hong SHEN, Jinming HOU, Qinyong ZHOU, Yantao ZHANG. Research on European Roadmap for Energy and Electrical Technology[J]. Power Generation Technology, 2021, 42(1): 94-102.
输电网运营商的任务 | 挑战——外部驱动的宏观趋势 | ||||
C1现代化 | C2安全性 | C3柔性 | C4经济性 | C5 ICT | |
运行 | T15 T16 T17 T18 T19 | T10 T11 | T18 | ||
资产评估 | T2 T3 | T13 | T21 | ||
规划 | T1 | T12 | |||
市场规则 | T15 T17 | T20 | |||
电网投资商责任和社会责任 | T4 | T14 | T16 | T19 |
Tab. 1 Relationship between research objectives and TSO's responsibilities
输电网运营商的任务 | 挑战——外部驱动的宏观趋势 | ||||
C1现代化 | C2安全性 | C3柔性 | C4经济性 | C5 ICT | |
运行 | T15 T16 T17 T18 T19 | T10 T11 | T18 | ||
资产评估 | T2 T3 | T13 | T21 | ||
规划 | T1 | T12 | |||
市场规则 | T15 T17 | T20 | |||
电网投资商责任和社会责任 | T4 | T14 | T16 | T19 |
课题序号 | 课题名称 | 主要目标 | 次要目标 |
1 | 柔性输电系统规划 | T1 | T7,T13 |
2 | 提高电网的可观性 | T5,T13 | T6 |
3 | 跨区的辅助服务和柔性服务 | T9 | T1,T13 |
4 | 泛欧洲电力系统稳定性评估 | T6,T7 | T1 |
5 | 集中式和分布式电源的协调 | T22,T16,T19 | T5,T6 |
6 | 电力系统柔性的测量和预测 | T13,T16 | T1,T4 |
7 | 多服务目标的储能系统应用 | T6,T10 | — |
8 | 需求侧相应工程 | T11,T19 | T5,T6,T13,T15, T17,T19 |
9 | 柔性电力市场设计 | T17 | T15,T16 |
10 | 用于数据管理的ICT工具 | T18,T19 | T11,T14,T16,T21 |
11 | 用于电力系统控制的ICT系统和数据处理技术 | T18,T19 | T5,T6,T7 |
12 | 能源系统的互联网物理安全性 | T21 | — |
13 | 基于大数据的智能资产管理 | T2 | — |
14 | 与其他能源系统的相互作用 | T1 | T6,T8,T10,T12 |
15 | 采用最具经济性的技术进行电网优化,使电网更具柔性 | T1 | T4,T10,T13 |
16 | 公众认可和利益相关者的参与 | T4 | T1,T2,T3,T14,T20 |
17 | 改进可再生能源预测、优化容量运行 | T12 | T7,T10,T11,T13,T15,T16 |
18 | 发电系统充分规划的可行方法 | T1,T8,T13 | T10,T11,T12 |
19 | 电力系统低概率事件的影响 | — | — |
20 | 储能电厂的优化 | T10 | T8,T9,T13 |
21 | 互联网安全性的经验 | T21 | T18 |
22 | OHL的部分绝缘 | T13 | — |
23 | 基于大数据的电力系统监测工具开发 | T18 | — |
Tab. 3 List of research and innovation projects
课题序号 | 课题名称 | 主要目标 | 次要目标 |
1 | 柔性输电系统规划 | T1 | T7,T13 |
2 | 提高电网的可观性 | T5,T13 | T6 |
3 | 跨区的辅助服务和柔性服务 | T9 | T1,T13 |
4 | 泛欧洲电力系统稳定性评估 | T6,T7 | T1 |
5 | 集中式和分布式电源的协调 | T22,T16,T19 | T5,T6 |
6 | 电力系统柔性的测量和预测 | T13,T16 | T1,T4 |
7 | 多服务目标的储能系统应用 | T6,T10 | — |
8 | 需求侧相应工程 | T11,T19 | T5,T6,T13,T15, T17,T19 |
9 | 柔性电力市场设计 | T17 | T15,T16 |
10 | 用于数据管理的ICT工具 | T18,T19 | T11,T14,T16,T21 |
11 | 用于电力系统控制的ICT系统和数据处理技术 | T18,T19 | T5,T6,T7 |
12 | 能源系统的互联网物理安全性 | T21 | — |
13 | 基于大数据的智能资产管理 | T2 | — |
14 | 与其他能源系统的相互作用 | T1 | T6,T8,T10,T12 |
15 | 采用最具经济性的技术进行电网优化,使电网更具柔性 | T1 | T4,T10,T13 |
16 | 公众认可和利益相关者的参与 | T4 | T1,T2,T3,T14,T20 |
17 | 改进可再生能源预测、优化容量运行 | T12 | T7,T10,T11,T13,T15,T16 |
18 | 发电系统充分规划的可行方法 | T1,T8,T13 | T10,T11,T12 |
19 | 电力系统低概率事件的影响 | — | — |
20 | 储能电厂的优化 | T10 | T8,T9,T13 |
21 | 互联网安全性的经验 | T21 | T18 |
22 | OHL的部分绝缘 | T13 | — |
23 | 基于大数据的电力系统监测工具开发 | T18 | — |
序号 | 工程名称 | 输电类型 | 电压等级/kV | 运营商 |
1 | Italy-France | 直流 | ±320 | TERNA |
2 | IFA2 | 直流 | ±320 | NGIHL |
3 | CZ Southwest-east corrido | 交流 | 400 | CEPS |
4 | Norway-Germany, NordLink | 直流 | ±500 | Statnett |
5 | Norway-Germany, NordLink | 交流 | 400 | Statnett |
6 | DKW-DE, step 3 | 交流 | 380 | TenneT-DE |
7 | COBRA cable | 直流 | ±400 | Energinet |
8 | NEMO-Link | 直流 | ±400 | NGET |
9 | Modular Offshore Grid | 交流 | 220 | ELIA |
10 | GerPol Improvement | 交流 | 400 | 50Hertz |
Tab. 4 Main transmission projects in Europe
序号 | 工程名称 | 输电类型 | 电压等级/kV | 运营商 |
1 | Italy-France | 直流 | ±320 | TERNA |
2 | IFA2 | 直流 | ±320 | NGIHL |
3 | CZ Southwest-east corrido | 交流 | 400 | CEPS |
4 | Norway-Germany, NordLink | 直流 | ±500 | Statnett |
5 | Norway-Germany, NordLink | 交流 | 400 | Statnett |
6 | DKW-DE, step 3 | 交流 | 380 | TenneT-DE |
7 | COBRA cable | 直流 | ±400 | Energinet |
8 | NEMO-Link | 直流 | ±400 | NGET |
9 | Modular Offshore Grid | 交流 | 220 | ELIA |
10 | GerPol Improvement | 交流 | 400 | 50Hertz |
1 | 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015: 125 |
LIU Z Y . Global energy internet[M]. Beijing: China Electric Power Press, 2015: 125 | |
2 | 联合国. 联合国气候变化框架公约[EB/OL]. (1994-03-21)[2020-08-05]. https://www.un.org/zh/documents/treaty/files/A-AC.237-18(PARTII)-ADD.1.shtml. |
The United Nations.United Nations Framework Convention on Climate Change[EB/OL].(1994-03-21)[2020-08-05].https://www.un.org/zh/documents/treaty/files/A-AC.237-18(PARTII)-ADD.1.shtml. | |
3 | 刘志超, 王洪彬, 沙浩, 等. 我国风电利用技术现状及其前景分析[J]. 发电技术, 2019, 40 (4): 389- 395. |
LIU Z C , WANG H B , SHA H , et al. Status and prospect analysis of wind power utilization technology in China[J]. Power Generation Technology, 2019, 40 (4): 389- 395. | |
4 | 焦瑞浩, 丁剑, 任建文, 等. 适应大规模清洁能源并网和传输的未来新型直流电网研究[J]. 智慧电力, 2019, 47 (6): 9- 18. |
JIAO R H , DING J , REN J W , et al. Future new DC power grids for large-scale clean energy integration and transmission[J]. Smart Power, 2019, 47 (6): 9- 18. | |
5 | 张柏林, 郁娇山, 黄万龙, 等. 甘肃地区高比例新能源大外送电网面临的挑战及思考[J]. 电网与清洁能源, 2020, 36 (4): 81- 89. |
ZHANG B L , YU J S , HUANG W L , et al. Challenges and reflections on the power grid of high proportion of new energy in Gansu province[J]. Power System and Clean Energy, 2020, 36 (4): 81- 89. | |
6 | 钱峰, 陈艺, 刘俊磊, 等. 大规模风电接入的电力系统协调控制策略[J]. 广东电力, 2019, 32 (11): 12- 18. |
QIAN F , CHEN Y , LIU J L , et al. Coordinated control strategy for power systems with large-scale wind power integration[J]. Guangdong Electric Power, 2019, 32 (11): 12- 18. | |
7 | 傅旭, 赵娟, 张更贺, 等. 风电场接入对送端电网暂态特性的影响研究[J]. 分布式能源, 2019, 4 (1): 17- 21. |
FU X , ZHAO J , ZHANG G H , et al. Influence of wind power generation on transient characteristics of sending-end power grid[J]. Distributed Energy, 2019, 4 (1): 17- 21. | |
8 | 全球能源互联网发展合作组织. 全球能源互联网落实联合国2030年可持续发展议程行动计划[R]. 北京: 全球能源互联网发展合作组织, 2017. |
Global Energy Internet Development Cooperation Organization.The global energy internet implements the action plan of the UN 2030 agenda for sustainable development[R].Beijing: Global Energy Internet Development Cooperation Organization, 2017. | |
9 | IRENA.Renewable energy statistics 2018[R].Abu Dhabi: IRENA, 2018. |
10 | REN21.Renewables 2018: global status report[R].Paris: REN21, 2018. |
11 | TECHNOFI, EASE, EDSO.Final 10-year ETIP SNET R&I roadmap covering 2016-2026[R].2016. |
12 | European Commission.An energy policy for Europe[R].Bruxelles: European Commission, 2007. |
13 | European Commission.Energy roadmap 2050[R].Bruxelles: European Commission, 2011. |
14 | European Commission.2030 Climate-energy package[R].Bruxelles: European Commission, 2014. |
15 | European Commission.A European strategy for a sustainable, competitive, and secure energy[R].Bruxelles: European Commission, 2006. |
16 | European Commission.Towards a European strategic energy technology plan[R].Bruxelles: European Commission, 2006. |
17 | European Commission.Progress in 2016: transfroming the European energy system through innovation[R].Bruxelles: European Commission, 2016. |
18 | European Commission.Communication-towards an integrated strategic energy technology (SET) Plan[R].Bruxelles: European Commission, 2015. |
19 | European Commission's Directorates-General for Research and Innovation.The strategic energy technology plan: 2007-2017[R].Bruxelles: Publications Office of the European Union, 2017. |
20 | European Commission.2030 Climate-energy package[R].Bruxelles: European Commission, 2018. |
21 | TECHNOFI, RSE, BACHER, et al.ETIP SNET implementation plan 2017-2020[Z].Bruxelles: European Commission, 2017. |
22 | European Commission.Horizon 2020 work programme 2018-2020[R].Bruxelles: European Commission, 2016. |
23 | ENTSO-E.Research and innovation roadmap 2017-2026[R].Bruxelles: ENTSO-E, 2016. |
24 | ENTSO-E.Research and innovation implementation plan 2017-2019[Z].Bruxelles: ENTSO-E, 2017. |
25 | ENTSO-E, ENTSOg.TYNDP 2018 scenario report[R].Bruxelles: ENTSO-E, 2017. |
26 | European Climate Foundation.Roadmap 2050: a practical guide to a prosperous, low-carbon Europe[R].Bruxelles: European Commission, 2010. |
27 | Dii.Desert power: the manual for renewable electricity in MENA[Z].Dii, 2013. |
28 | ORTHS A, GREEN D, FISHER E, et al.The european north-sea countries offshore grid initiative[C]//Power & Energy Society General Meeting.IEEE, 2013. |
29 | European Commission.e-Highway 2050-modular development plan of the pan-European transmission system 2050[R].Bruxelles: European Commission, 2013. |
30 | Friends of the Supergrid.Roadmap to the supergrid technologies 2012[R].Friends of the Supergrid, 2012. |
31 | Friends of the Supergrid.Roadmap to the supergrid technologies 2016[R].Friends of the Supergrid, 2016. |
[1] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[2] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[3] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[4] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[5] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[6] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[7] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
[8] | Yuzhen HUANG, Yanqi CHEN, Zhicong WU, Gang XU, Tong LIU. Energy Saving Optimization of Extraction Steam Distribution for Cogeneration Units Under Carbon Neutral Background [J]. Power Generation Technology, 2023, 44(1): 85-93. |
[9] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[10] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[11] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
[12] | Hu GAO, Fan LIU, Hai LI. Opportunities, Challenges and Application Prospects of Ammonia Fuel Under the Target of Carbon Neutrality [J]. Power Generation Technology, 2022, 43(3): 462-467. |
[13] | Chao HUANG, Siqi BU, Qiyu CHEN, Hiu Hung LEE. Meta-Power: Next-Generation Smart Grid [J]. Power Generation Technology, 2022, 43(2): 287-304. |
[14] | Lin LI, Tongyu LIU, Shuang LI, Yixiang SHI, Ningsheng CAI. Research Progress of Hydrogen Production by Methanol Reforming for Fuel Cell Power Generation [J]. Power Generation Technology, 2022, 43(1): 44-53. |
[15] | Baozhong ZHOU, Dunnan LIU, Jiguang ZHANG, Yi LI, Erfeng XU, Sheng BI. Research on Optimal Allocation of Multi-Energy Complementary Project of Wind-Solar-Thermal Integration [J]. Power Generation Technology, 2022, 43(1): 10-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||