发电技术 ›› 2024, Vol. 45 ›› Issue (2): 353-362.DOI: 10.12096/j.2096-4528.pgt.22152
付红军1, 朱劭璇2, 王步华1, 谢岩2, 熊浩清1, 唐晓骏2, 杜晓勇1, 李程昊3, 李晓萌3
收稿日期:
2023-05-05
出版日期:
2024-04-30
发布日期:
2024-04-29
通讯作者:
朱劭璇
作者简介:
基金资助:
Hongjun FU1, Shaoxuan ZHU2, Buhua WANG1, Yan XIE2, Haoqing XIONG1, Xiaojun TANG2, Xiaoyong DU1, Chenghao LI3, Xiaomeng LI3
Received:
2023-05-05
Published:
2024-04-30
Online:
2024-04-29
Contact:
Shaoxuan ZHU
Supported by:
摘要:
随着电网规模扩大和电力元件不断增加,电力系统检修方式变得日趋复杂,仅依靠传统方法难以对海量检修方式下电网的低频振荡风险进行评估。针对此问题,提出了一种基于长短期记忆(long short term memory,LSTM)神经网络的检修态电网低频振荡风险预测方法。首先,提出了电力系统检修方式的统一编码方法,使计算机能够快速、准确识别电网在各种检修方式下的运行状态;然后,基于同步相量测量单元(phasor measurement unit,PMU)实时测量的电网历史运行数据,利用LSTM神经网络对不同检修方式下电网的低频振荡次数进行预测,从而评估检修态电网发生低频振荡的风险;最后,以华中地区某省级电网为算例,验证了所提方法的准确性和快速性。
中图分类号:
付红军, 朱劭璇, 王步华, 谢岩, 熊浩清, 唐晓骏, 杜晓勇, 李程昊, 李晓萌. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362.
Hongjun FU, Shaoxuan ZHU, Buhua WANG, Yan XIE, Haoqing XIONG, Xiaojun TANG, Xiaoyong DU, Chenghao LI, Xiaomeng LI. Risk Prediction Method of Low Frequency Oscillation in Maintenance Power Network Based on Long Short Term Memory Neural Network[J]. Power Generation Technology, 2024, 45(2): 353-362.
预测方法 | 预测正确组数 | 正确率 | 平均预测误差 |
---|---|---|---|
LSTM CNN | 43 39 | 86% 78% | 0.14 0.26 |
表1 不同预测方法结果统计
Tab. 1 Result statistics of different prediction methods
预测方法 | 预测正确组数 | 正确率 | 平均预测误差 |
---|---|---|---|
LSTM CNN | 43 39 | 86% 78% | 0.14 0.26 |
1 | 范栋琛,张宸宇,姜云龙,等 .基于PET控制特性的交直流配电网直流侧低频振荡分析[J].电力工程技术,2023,42(3):36-43. doi:10.12158/j.2096-3203.2023.03.005 |
FAN D C, ZHANG C Y, JIANG Y L,et al .Analysis for low frequency oscillation on the DC side of AC/DC distribution network based on PET control characteristics[J].Electric Power Engineering Technology,2023,42(3):36-43. doi:10.12158/j.2096-3203.2023.03.005 | |
2 | 张程,刘佳静,蔡思静,等 .基于MEEMD与MP的电网低频振荡模态识别[J].智慧电力,2022,50(4):89-95. doi:10.3969/j.issn.1673-7598.2022.04.014 |
ZHANG C, LIU J J, CAI S J,et al .Low frequency oscillation modal identification of power grid based on MEEMD and MP[J].Smart Power,2022,50(4):89-95. doi:10.3969/j.issn.1673-7598.2022.04.014 | |
3 | DEMELLO F .Concepts of synchronous machine stability as affected by excitation control[J].IEEE Transactions on Power Apparatus and Systems,1969,88(4):316-329. doi:10.1109/tpas.1969.292452 |
4 | 李生虎,叶剑桥,张浩,等 .基于DFIG功率振荡阻尼器的电力系统低频振荡抑制综述[J].电力建设,2022,43(9):25-33. |
LI S H, YE J Q, ZHANG H,et al .Review on low-frequency oscillation damping in power systems with DFIG-POD[J].Electric Power Construction,2022,43(9):25-33. | |
5 | 汪康康,孙昕炜,周波,等 .基于压缩空气储能附加阻尼控制的电力系统低频振荡抑制策略[J].中国电力,2023,56(10):115-123. |
WANG K K, SUN X W, ZHOU B,et al .Low-frequency oscillation suppression strategy for power system based on supplementary damping control of compressed air energy storage[J].Electric Power,2023,56(10):115-123. | |
6 | 汤涌 .电力系统强迫功率振荡的基础理论[J].电网技术,2006,30(10):29-33. doi:10.3321/j.issn:1000-3673.2006.10.006 |
TANG Y .Fundamental theory of forced power oscillation in power system[J].Power System Technology,2006,30(10):29-33. doi:10.3321/j.issn:1000-3673.2006.10.006 | |
7 | 王铁强,贺仁睦,王卫国,等 .电力系统低频振荡机理的研究[J].中国电机工程学报,2002,22(2):22-26. doi:10.3321/j.issn:0258-8013.2002.02.005 |
WANG T Q, HE R M, WANG W G,et al . The mechanism study of low frequency oscillation in power system[J].Proceedings of the CSEE,2002,22(2):22-26. doi:10.3321/j.issn:0258-8013.2002.02.005 | |
8 | 辛建波,舒展,冯双,等 .原动机及调速系统对强迫功率振荡的影响[J].南京工业大学学报(自然科学版),2018,40(6):79-83. |
XIN J B, SHU Z, FENG S,et al .Effects of power turbine and its governor on forced oscillations[J].Journal of Nanjing Tech University (Natural Science Edition),2018,40(6):79-83. | |
9 | 黄荣泽 .百色—兴义区域互联电网低频振荡模式分析及抑制措施[J].广西电力,2019,42(5):52-56. doi:10.3969/j.issn.1671-8380.2019.05.012 |
HUANG R Z .Analysis of the low frequency oscillation mode in Baise-Xingyi regional interconnected power grid and its suppression measures[J].Guangxi Electric Power,2019,42(5):52-56. doi:10.3969/j.issn.1671-8380.2019.05.012 | |
10 | 张晋宝 .基于特征值法的黑龙江电网小干扰稳定性分析[J].黑龙江电力,2019,41(6):488-494. |
ZHANG J B .Small disturbance stability analysis in Heilongjiang power grid based on eigenvalue method[J].Heilongjiang Electric Power,2019,41(6):488-494. | |
11 | 黄瑞,肖宇,刘谋海,等 .复频谱插值DFT的电力系统低频振荡信号测量方法[J].湖南大学学报(自然科学版),2021,48(10):170-177. |
HUANG R, XIAO Y, LIU M H,et al .Estimation method of power system oscillation signal under power swing with using complex spectral interpolation DFT[J].Journal of Hunan University (Natural Sciences),2021,48(10):170-177. | |
12 | 姜涛,刘方正,陈厚合,等 .基于多通道快速傅里叶小波变换的电力系统主导振荡模式及模态协同辨识方法研究[J].电力自动化设备,2019,39(7):125-132. doi:10.16081/j.issn.1006-6047.2019.07.019 |
JIANG T, LIU F Z, CHEN H H,et al . Cooperated identification method of dominant oscillation modes and mode shapes for power system based on multi-channel fast Fourier transform based continuous wavelet transform[J].Electric Power Automation Equipment,2019,39(7):125-132. doi:10.16081/j.issn.1006-6047.2019.07.019 | |
13 | 赵峰,吴梦娣 .EEMD-Robust ICA和Prony算法在电力系统低频振荡模态辨识中的应用[J].太阳能学报,2019,40(10):2919-2929. |
ZHAO F, WU M D .Application of EEMD-Robust ICA and prony algorithm in modes identification of power system low frequency oscillation[J].Journal of Solar Energy,2019,40(10):2919-2929. | |
14 | 张俊峰,陈珉,杨婷,等 .低频振荡参数Prony辨识中的数字滤波器设计[J].电力系统及其自动化学报,2018,30(12):99-104. doi:10.3969/j.issn.1003-8930.2018.12.015 |
ZHANG J F, CHEN M, YANG T,et al . Design of digital filter for recognition of low-frequency oscillation parameters using prony algorithm[J].Proceedings of the CSU-EPSA,2018,30(12):99-104. doi:10.3969/j.issn.1003-8930.2018.12.015 | |
15 | 汪颂军,刘涤尘,廖清芬,等 .基于EEMD-NExT的低频振荡主导模式工况在线辨识与预警[J].电力自动化设备,2014,34(12):111-116. doi:10.3969/j.issn.1006-6047.2014.12.019 |
WANG S J, LIU D C, LIAO Q F,et al .Online dominant mode identification and warning based on EEMD-NExT for low-frequency oscillation in operating conditions[J].Electric Power Automation Equipment,2014,34(12):111-116. doi:10.3969/j.issn.1006-6047.2014.12.019 | |
16 | 杨德友,王文嘉,高际惟,等 .随机数据驱动下的机电振荡参数在线提取与阻尼调制(一):基于ORSSI的模态参数在线辨识[J].中国电机工程学报,2018,38(8):2253-2261. |
YANG D Y, WANG W J, GAO J W,et al .On-line electromechanical oscillation analysis and damping modulation for power system using ambient data (part I):modal parameters identification based on ORSSI[J].Proceedings of the CSEE,2018,38(8):2253-2261. | |
17 | 张敏,沈健,侯明国,等 .相量测量单元实现次同步振荡在线辨识和告警的探讨[J].电力系统自动化,2016,40(16):143-146. doi:10.7500/AEPS20151013003 |
ZHANG M, SHEN J, HOU M G,et al .Discussion on on-line identification and warning os subsynchronous oscillation for phasor measuring unit[J].Automation of Electric Power Systems,2016,40(16):143-146. doi:10.7500/AEPS20151013003 | |
18 | 孙志军,薛磊,许阳明,等 .深度学习研究综述[J].计算机应用研究,2012,29(8):2806-2810. doi:10.3969/j.issn.1001-3695.2012.08.002 |
SUN Z J, XUE L, XU Y M,et al .Overview of deep learning[J].Application Research of Computers,2012,29(8):2806-2810. doi:10.3969/j.issn.1001-3695.2012.08.002 | |
19 | 周飞燕,金林鹏,董军 .卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. doi:10.11897/SP.J.1016.2017.01229 |
ZHOU F Y, JIN L P, DONG J,et al .Review of convolutional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251. doi:10.11897/SP.J.1016.2017.01229 | |
20 | 冯双,崔昊,陈佳宁,等 .人工智能在电力系统宽频振荡中的应用与挑战[J].中国电机工程学报,2021,41(23):7889-7905. |
FENG S, CUI H, CHEN J N,et al .Applications and challenges of artificial intelligence in power system wide-band oscillations[J].Proceedings of the CSEE,2021,41(23):7889-7905. | |
21 | 竺炜,唐颖杰,周有庆,等 .基于改进 Prony 算法的电力系统低频振荡模式识别[J].电网技术,2009,33(5):44-47. |
ZHU W, TANG Y J, ZHOU Y Q,et al . Identification of power system low frequency oscillation mode based on improved prony algorithm[J].Power System Technology,2009,33(5):44-47. | |
22 | 竺炜,马建伟,曾喆昭,等 .分段傅里叶神经网络的低频振荡模式识别方法[J].电力系统保护与控制,2012,40(15):40-45. doi:10.3969/j.issn.1674-3415.2012.15.009 |
ZHU W, MA J W, ZENG Z Z,et al .Low frequency oscillation mode recognition based on segmental Fourier neural network algorithm[J].Power System Protection and Control,2012,40(15):40-45. doi:10.3969/j.issn.1674-3415.2012.15.009 | |
23 | 赵妍,崔浩瀚,荣子超 .次同步振荡在线监测的同步提取变换和朴素贝叶斯方法[J].电力系统自动化,2019,43(3):187-192. |
ZHAO Y, CUI H H, RONG Z C .On-line monitoring of subsynchronous oscillation based on synchroextracting transform and naive bayes method[J].Automation of Electric Power Systems,2019,43(3):187-192. | |
24 | 赵妍,霍红,徐晗桐 .二阶段随机森林分类方法在低频振荡监测中的应用[J].东北电力大学学报,2020,40(2):60-67. |
ZHAO Y, HUO H, XU H T .Application of two-stage random forest classification method to low-frequency oscillation monitoring[J].Journal of Northeast Electric Power University,2020,40(2):60-67. | |
25 | 蒋长江,刘俊勇,刘友波,等 .基于广域测量系统和CELL 理论的强迫振荡在线感知与定位[J].电力自动化设备,2015,35(2):125-132. |
JIANG C J, LIU J Y, LIU Y B,et al . Online forced oscillation detection and identification based on wide area measurement system and CELL theory[J].Electric Power Automation Equipment,2015,35(2):125-132. | |
26 | BANNA H U, SOLANKI S K, SOLANKI J .Data-driven disturbance source identification for power system oscillations using credibility search ensemble learning[J].IET Smart Grid,2019,2(2):293-300. doi:10.1049/iet-stg.2018.0092 |
27 | 李相俊,许格健 .基于长短期记忆神经网络的风力发电功率预测方法[J].发电技术,2019,40(5):426-433. doi:10.12096/j.2096-4528.pgt.19108 |
LI X J, XU G J .Wind power prediction method based on long short-term memory neural network[J].Power Generation Technology,2019,40(5):426-433. doi:10.12096/j.2096-4528.pgt.19108 | |
28 | 刘君,邓毅,杨延西,等 .基于深度学习的空预器转子红外补光图像积灰状态识别[J].发电技术,2022,43(3):510-517. doi:10.12096/j.2096-4528.pgt.20122 |
LIU J, DENG Y, YANG Y X,et al .Ash accumulation state identification for infrared compensation images of air preheater rotor based on deep learning method[J].Power Generation Technology,2022,43(3):510-517. doi:10.12096/j.2096-4528.pgt.20122 | |
29 | 高骞,杨俊义,刘凯,等 .基于大数据深度强化学习的交流配电网稳定性控制研究[J].电网与清洁能源,2023,39(6):26-32. doi:10.3969/j.issn.1674-3814.2023.06.004 |
GAO Q, YANG J Y, LIU K,et al .Research on the stability control of AC distribution networks based on deep reinforcement learning of big data[J].Power System and Clean Energy,2023,39(6):26-32. doi:10.3969/j.issn.1674-3814.2023.06.004 | |
30 | ZHU L, LUO Y .Deep feedback learning based predictive control for power system undervoltage load shedding[J].IEEE Transactions on Power Systems,2021,99:1-12. doi:10.1109/tpwrs.2020.3048681 |
31 | MANNINEN H, RAMLAL C J, SINGH A,et al .Toward automatic condition assessment of high-voltage transmission infrastructure using deep learning techniques[J].International Journal of Electrical Power & Energy Systems,2021,128(4):106726. doi:10.1016/j.ijepes.2020.106726 |
32 | 武霁阳,李强,陈潜,等 .知识图谱框架下基于深度学习的HVDC系统故障辨识[J].电力系统保护与控制,2023,51(20):160-169. |
WU J Y, LI Q, CHEN Q,et al .Fault identification of an HVDC system based on deep learning in the framework of a knowledge graph[J].Power System Protection and Control,2023,51(20):160-169. | |
33 | 程超,葛维,郭兰柯,等 .基于深度学习的新型电力智能交互平台多任务集成模型研究[J].电测与仪表,2023,60(6):81-85. |
CHENG C, GE W, GUO L K,et al .Research on multi-task ensemble model based on deep learning for novel power intelligent interaction platform[J].Electrical Measurement & Instrumentation,2023,60(6):81-85. | |
34 | 郭梦轩,管霖,苏寅生,等 .基于改进边图卷积网络的电力系统小干扰稳定评估模型[J].电网技术,2022,46(6):2095-2103. |
GUO M X, GUAN L, SU Y S,et al . Small-signal stability assessment model based on improved edge graph convolutional networks of power system[J].Power System Technology,2022,46(6):2095-2103. | |
35 | 秦心筱,张昌华,徐子豪,等 .基于卷积神经网络的电力系统低频振荡主导模态特征定性辨识[J].电力系统保护与控制,2021,49(10):51-58. |
QIN X X, ZHANG C H, XU Z H,et al . Research on qualitative identification of a low frequency oscillations dominant mode in power system based on a convolutional neural network[J].Power System Protection and Control,2021,49(10):51-58. | |
36 | 冯双,崔昊,陈佳宁,等 .基于自编码器信号压缩与LSTM的宽频振荡扰动源定位方法[J].电力系统自动化,2022,46(12):194-201. |
FENG S, CUI H, CHEN J N,et al .Location method of wide-band oscillation disturbance sources based on signal compression of autoencoder and LSTM[J].Automation of Electric Power Systems,2022,46(12):194-201. |
[1] | 肖白, 赵雪纯, 董光德. 电能质量综合评估方法综述与展望[J]. 发电技术, 2024, 45(4): 716-733. |
[2] | 陈昱, 丁鸿, 崔勇, 朱里, 陈士俊, 凌秋阳, 徐勇生, 郑建. 变电设备温度态势感知及辅助决策系统方案研究[J]. 发电技术, 2024, 45(4): 744-752. |
[3] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[4] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[5] | 邵宜祥, 刘剑, 胡丽萍, 过亮, 方渊, 李睿. 一种改进组合神经网络的超短期风速预测方法研究[J]. 发电技术, 2024, 45(2): 323-330. |
[6] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[7] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[8] | 潘晓杰, 徐友平, 解治军, 王玉坤, 张慕婕, 石梦璇, 马坤, 胡伟. 堆栈式集成学习驱动的电力系统暂态稳定预防控制优化方法[J]. 发电技术, 2023, 44(6): 865-874. |
[9] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[10] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[11] | 吴灏, 许晓, 彭紫楠, 郭宁辉, 王淇锋. 基于电网云数据管理的电气设备大数据移动实验室及其应用研究[J]. 发电技术, 2023, 44(3): 417-424. |
[12] | 杜将武, 唐小强, 罗志伟, 刘敦楠, 陈积旭, 徐尔丰, 毕圣. 面向综合能源园区的丰枯电价定价方法[J]. 发电技术, 2023, 44(2): 261-269. |
[13] | 肖洋, 李志强, 程林, 汤磊, 夏潮, 梁英, 宋锐, 王东阳, 李贺文. 西北电网集中式调相机AVC综合协调控制策略[J]. 发电技术, 2023, 44(2): 270-279. |
[14] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
[15] | 董宸, 吴强, 黄河, 章锐, 杨秀媛. 基于免疫算法的电网拓扑结构识别[J]. 发电技术, 2023, 44(1): 125-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||