发电技术 ›› 2024, Vol. 45 ›› Issue (2): 323-330.DOI: 10.12096/j.2096-4528.pgt.22038

• 新能源 • 上一篇    下一篇

一种改进组合神经网络的超短期风速预测方法研究

邵宜祥, 刘剑, 胡丽萍, 过亮, 方渊, 李睿   

  1. 南瑞集团有限公司,江苏省 南京市 211106
  • 收稿日期:2023-03-15 出版日期:2024-04-30 发布日期:2024-04-29
  • 作者简介:邵宜祥(1962),男,研究员级高级工程师,研究方向为水利水电技术,shaoyixiang@sgepri.sgcc.com.cn
    刘剑(1983),男,高级工程师,研究方向为电气工程,liujian2@sgepri.sgcc.com.cn
    李睿(1998),男,硕士,研究方向为新能源发电,xinrui123689@126.com
  • 基金资助:
    国家电网公司科技项目(524608140152)

Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks

Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI   

  1. NARI Group Corporation, Nanjing 211106, Jiangsu Province, China
  • Received:2023-03-15 Published:2024-04-30 Online:2024-04-29
  • Supported by:
    Science and Technology Project of SGCC(524608140152)

摘要:

超短期风速预测是保障风电机组桨距角前馈控制实施效果的关键,对提高风电机组环境适应性具有重要影响。为了提高预测精度,提出了一种改进组合神经网络的超短期风速预测方法。该方法选择适合时间序列预测且具有较强非线性学习能力的BP神经网络和长短期记忆(long short-term memory,LSTM)神经网络进行加权组合,以消除单个神经网络可能存在的较大误差;同时,为了提高组合效果,采用差分进化算法对组合权重进行优化。将该方法应用于某风场超短期风速预测中,通过与单神经网络预测、等权重组合神经网络预测的结果对比,验证了所提方法在提高预测精度上的有效性。

关键词: 风力发电, 超短期风速预测, BP神经网络, 长短期记忆(LSTM)神经网络, 差分进化(DE)算法

Abstract:

Ultra-short-term wind speed prediction is the key to ensure the implementation effect of wind turbine pitch angle feedforward control, and has an important impact on improving the environmental adaptability of wind turbines. In order to improve the prediction accuracy, an ultra-short-term wind speed prediction method based on an improved combined neural networks was proposed. In this method, BP neural network and long short-term memory (LSTM) neural network, which are suitable for time series prediction and have strong nonlinear learning ability, are selected for weighted combination to eliminate the large error that may exist in a single neural network. At the same time, to improve the combination effect, the differential evolution (DE) algorithm was used to optimize the combination weight. The method was applied to the ultra-short-term wind speed prediction of a wind farm. Compared with the results of single neural network prediction and equal weight combined neural networks prediction, the effectiveness of the proposed method in improving the prediction accuracy was verified.

Key words: wind power, ultra-short-term wind speed prediction, BP neural network, long short-term memory (LSTM) neural network, differential evolution (DE) algorithm

中图分类号: