发电技术 ›› 2025, Vol. 46 ›› Issue (3): 590-599.DOI: 10.12096/j.2096-4528.pgt.23184

• 新能源 • 上一篇    

线性菲涅尔集热系统焦距优化建模仿真及实验验证

张志勇1, 孔令刚1, 范多进1, 路小娟2   

  1. 1.兰州交通大学研究院光热储能综合能源系统工程研究中心,甘肃省 兰州市 730070
    2.兰州交通大学自动化与电气工程学院,甘肃省 兰州市 730070
  • 收稿日期:2024-03-01 修回日期:2024-06-02 出版日期:2025-06-30 发布日期:2025-06-16
  • 通讯作者: 孔令刚
  • 作者简介:张志勇(1986),男,博士,副教授,主要研究方向为太阳能光热应用,zzy_2050@163.com
    孔令刚(1978),男,博士,研究员,主要研究方向为自动控制理论、太阳能光热应用,本文通信作者,850726917@qq.com
    路小娟(1975),女,博士,教授,研究方向为电气自动化、新能源集成控制与优化。
  • 基金资助:
    国家自然科学基金项目(52266012);甘肃省科技重大专项(22ZD6GA063);酒泉市科技支撑计划项目(2022CA10250);敦煌市科技计划项目

Modeling Simulation and Experimental Verification of Focal Length Optimization in Linear Fresnel Collector

Zhiyong ZHANG1, Linggang KONG1, Duojin FAN1, Xiaojuan LU2   

  1. 1.Engineering Research Center of Photothermal Energy Storage Integrated Energy System Institute, Lanzhou Jiaotong University, Lanzhou 730070, Gansu Province, China
    2.School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu Province, China
  • Received:2024-03-01 Revised:2024-06-02 Published:2025-06-30 Online:2025-06-16
  • Contact: Linggang KONG
  • Supported by:
    National Natural Science Foundation of China(52266012);Major Science and Technology Projects of Gansu Province(22ZD6GA063);Jiuquan Science and Technology Support Plan Project(2022CA10250);Dunhuang Science and Technology Plan Project

摘要:

目的 为提高线性菲涅尔集热系统(linear Fresnel collector,LFC)聚光拦截率,增加跟踪系统的误差控制阈值,提高系统光热转换效率,研究一次反射镜光斑宽度的变化规律十分有必要。为此,对LFC微弧形反射镜反射光斑宽度进行了建模仿真和实验研究。 方法 根据LFC的结构特点,建立LFC微弧形一次反射镜聚光模型,通过MATLAB仿真分析,获得微弧形一次反射镜边界条件下的光斑宽度变化规律,并搭建光斑测试平台,利用测试平台角度旋转和接收板位置变换模拟不同季节和时刻太阳光线入射方向,以验证仿真结果的准确性和有效性。 结果 仿真结果显示,因太阳张角的存在,反射光斑宽度比平行光条件下增加75.8%;旋转平台实验结果显示,实测光斑宽度变化规律与仿真结果一致,在太阳张角的作用下,LFC在冬季最大跟踪误差控制余量为0.173°,在夏季最大跟踪误差控制余量为0.207°。 结论 在冬季时,LFC系统跟踪控制精度要求较夏季时需提升16.4%,因此,LFC微弧反射镜焦距应按照冬季时光斑宽度的跟踪控制余量进行设计。

关键词: 太阳能, 光热发电, 集热系统, 线性菲涅尔, 聚光集热, 反射光斑宽度, 聚光拦截率, 微弧形反射镜

Abstract:

Objectives In order to improve the concentrated light interception rate of linear Fresnel collector (LFC), increase the error control threshold of the tracking system, and enhance the system’s photothermal conversion efficiency, it is necessary to study the variation patterns of light spot width on the primary reflector. Therefore, the reflected light spot width of the LFC micro-arc mirror is modeled, simulated and experimentally studied. Methods Based on the structural characteristics of the LFC, a light concentrating model of the micro-arc primary reflector is developed. Through MATLAB simulation analysis, the variation patterns of light spot width under the boundary conditions of the micro-arc primary reflector are obtained. A light spot test platform is developed, which simulates solar incidence angles of different seasons and times of the day by changing the angle of the test platform and adjusting the position of the receiver board, to verify the accuracy and effectiveness of the simulation results. Results Due to the presence of the solar angle, the reflected light spot width increases by 75.8% compared to the parallel light condition. The experimental results of rotating test platform show that the variation patterns of the measured light spot width are consistent with the simulation results. Under the influence of the solar angle, the maximum tracking error control margin of the LFC is 0.173° in winter and 0.207° in summer. Conclusions The tracking control accuracy of the LFC system in winter should be 16.4% higher than that in summer. Therefore, the focal length of the LFC micro-arc reflector should be designed based on the tracking control margin of the light spot width in winter.

Key words: solar energy, photothermal power generation, heat collection system, linear Fresnel, concentrating heat collection, reflected light spot width, concentrated light interception rate, micro-arc mirror

中图分类号: