发电技术 ›› 2024, Vol. 45 ›› Issue (5): 878-887.DOI: 10.12096/j.2096-4528.pgt.23046
• 新能源 • 上一篇
邱立翔, 黄超, 魏高升, 崔柳, 杜小泽
收稿日期:
2023-11-01
修回日期:
2024-02-21
出版日期:
2024-10-31
发布日期:
2024-10-29
作者简介:
基金资助:
Lixiang QIU, Chao HUANG, Gaosheng WEI, Liu CUI, Xiaoze DU
Received:
2023-11-01
Revised:
2024-02-21
Published:
2024-10-31
Online:
2024-10-29
Supported by:
摘要:
目的 纳米流体技术是提升太阳能光热电站熔盐储热材料导热性能的重要手段。然而实际熔盐基纳米流体中纳米粒子通常会自发聚集并沉降,进而显著影响储能介质的热导率。为了深入探究熔盐基纳米流体热物性的调控规律,在太阳盐相变介质中分别构建了具有不同分散形态的二氧化硅纳米颗粒。 方法 基于分子动力学和格子玻尔兹曼方法,重点探讨了体系温度、纳米颗粒的质量分数以及聚集体微观形貌对太阳盐-二氧化硅纳米流体热导率的影响特性。 结果 添加纳米颗粒能有效提升基液的导热性能。相较于均匀分散的纳米流体,聚集型纳米流体的热导率更高,并且随着团聚颗粒分形维数的增加而降低。此外,纳米流体的热导率与温度、团聚尺寸呈负相关,而与纳米粒子的质量分数、聚集体主链的粒子数量以及其团聚程度呈正相关。 结论 研究成果揭示了纳米颗粒聚集对相变材料内热输运的作用机制,并为熔盐基纳米流体热物性的设计提供了参考。
中图分类号:
邱立翔, 黄超, 魏高升, 崔柳, 杜小泽. 颗粒团聚对太阳盐纳米流体导热性能的影响特性研究[J]. 发电技术, 2024, 45(5): 878-887.
Lixiang QIU, Chao HUANG, Gaosheng WEI, Liu CUI, Xiaoze DU. Effect of Particle Agglomeration on Thermal Conductivity of Solar Salt Nanofluids[J]. Power Generation Technology, 2024, 45(5): 878-887.
原子 | Aii / (×4 184 J/mol) | ρii /nm | Cii /(×10-60 m×4 184 J/mol) | qi /eV |
---|---|---|---|---|
Na | 9 778.06 | 0.031 7 | 24.18 | 1 |
K | 35 833.47 | 0.033 7 | 349.9 | 1 |
N | 33 652.75 | 0.026 46 | 259.1 | 0.95 |
NO3-中O | 62 142.9 | 0.023 92 | 259.4 | -0.65 |
Si | 72 460.64 | 0.035 1 | 14 415.29 | 1.910 241 8 |
SiO2中O | 15 170.70 | 0.038 6 | 617.24 | -0.955 209 |
表1 Buckingham势函数的相关势参数
Tab. 1 Related potential parameters of Buckingham potential function
原子 | Aii / (×4 184 J/mol) | ρii /nm | Cii /(×10-60 m×4 184 J/mol) | qi /eV |
---|---|---|---|---|
Na | 9 778.06 | 0.031 7 | 24.18 | 1 |
K | 35 833.47 | 0.033 7 | 349.9 | 1 |
N | 33 652.75 | 0.026 46 | 259.1 | 0.95 |
NO3-中O | 62 142.9 | 0.023 92 | 259.4 | -0.65 |
Si | 72 460.64 | 0.035 1 | 14 415.29 | 1.910 241 8 |
SiO2中O | 15 170.70 | 0.038 6 | 617.24 | -0.955 209 |
Kr /(eV⋅10-20 m) | r0 /nm | Kθ /eV | θ /(°) | KUB /eV | rUB/nm |
---|---|---|---|---|---|
17.534 4 | 0.126 | 2.712 2 | 120 | 4.960 8 | 0.219 55 |
表2 NO3-中原子相互作用的势能参数
Tab. 2 Potential energy parameters of atomic interactions in NO3-
Kr /(eV⋅10-20 m) | r0 /nm | Kθ /eV | θ /(°) | KUB /eV | rUB/nm |
---|---|---|---|---|---|
17.534 4 | 0.126 | 2.712 2 | 120 | 4.960 8 | 0.219 55 |
1 | 佟锴,杨立军,宋记锋,等 .聚光太阳能集热场先进技术综述[J].发电技术,2019,40(5):413-425. |
TONG K, YANG L J, SONG J F,et al .Review on advanced technology of concentrated solar power concentrators[J].Power Generation Technology,2019,40(5):413-425. | |
2 | UEDA A, HORI T, YUKITA K,et al .Energy presumption used with flux of solar radiation and solar spectrum density in solar generation of electricity (faculty of engineering: department of electrical engineering)[J].Bulletin of Aichi Institute of Technology,2004,39:1-6. |
3 | 刘兰华,狄林文,董兴万,等 .抛物槽式聚光太阳能集热回路动态特性研究[J].发电技术,2021,42(6):673-681. doi:10.12096/j.2096-4528.pgt.21066 |
LIU L H, DI L W, DONG X W,et al .Study on dynamic characteristics of parabolic trough solar collector circuit[J].Power Generation Technology,2021,42(6):673-681. doi:10.12096/j.2096-4528.pgt.21066 | |
4 | 魏高升,邢丽婧,杜小泽,等 .太阳能热发电系统相变储热材料选择及研发现状[J].中国电机工程学报,2014,34(3):325-335. |
WEI G S, XING L J, DU X Z,et al .Research status and selection of phase change thermal energy storage materials for CSP systems[J].Proceedings of the CSEE,2014,34(3):325-335. | |
5 | 徐运飞,吴水木,李英杰 .面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J].发电技术,2022,43(5):740-747. doi:10.12096/j.2096-4528.pgt.22089 |
XU Y F, WU S M, LI Y J .Research progress of CaO-CO2 thermochemical heat storage technology for concentrated solar power plant[J].Power Generation Technology,2022,43(5):740-747. doi:10.12096/j.2096-4528.pgt.22089 | |
6 | 张涛,刘伉,陶然,等 .计及热惯性及光热电站的综合能源系统优化[J].电力建设,2023,44(1):109-117. doi:10.12204/j.issn.1000-7229.2023.01.013 |
ZHANG T, LIU K, TAO R,et al .Integrated energy system optimization considering thermal inertia and CSP station[J].Electric Power Construction,2023,44(1):109-117. doi:10.12204/j.issn.1000-7229.2023.01.013 | |
7 | 王湘艳,陈宁,王维洲,等 .计及置信容量的光热电站储热容量优化配置[J].电力工程技术,2022,41(5):103-109,115. doi:10.12158/j.2096-3203.2022.05.012 |
WANG X Y, CHEN N, WANG W Z,et al .Optimal design for thermal energy storage capacity of CSP considering credible capacity[J].Electric Power Engineering Technology,2022,41(5):103-109,115. doi:10.12158/j.2096-3203.2022.05.012 | |
8 | 田禾青,周俊杰,郭茶秀 .熔盐储热材料比热容强化的研究进展[J].化工进展,2020,39(2):584-595. doi:10.16085/j.issn.1000-6613.2019-0798 |
TIAN H Q, ZHOU J J, GUO C X .Progress of specific heat enhancement of molten salt thermal energy storage materials[J].Chemical Industry and Engineering Progress,2020,39(2):584-595. doi:10.16085/j.issn.1000-6613.2019-0798 | |
9 | SONG W, LU Y, WU Y,et al .Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J].Solar Energy Materials and Solar Cells,2018,179:66-71. doi:10.1016/j.solmat.2018.01.014 |
10 | TIAN H, DU L, WEI X,et al .Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage[J].Applied Energy,2017,204:525-530. doi:10.1016/j.apenergy.2017.07.027 |
11 | 张月,王敏,李锦丽,等 .纳米粒子掺杂太阳盐复合材料热物性研究[J].无机盐工业,2022,54(5):54-60. |
ZHANG Y, WANG M, LI J L,et al .Study on thermophysical properties of solar salt composites doped with nanoparticles[J].Inorganic Chemicals Industry,2022,54(5):54-60. | |
12 | CUI X, CHENG X, XU H,et al .Enhancement of thermophysical coefficients in nanofluids:a simulation study[J].International Journal of Modern Physics B,2020,34(25):2050222. doi:10.1142/s0217979220502227 |
13 | ANGAYARKANNI S A, PHILIP J .Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids[J].Journal of Nanofluids,2014,3(1):17-25. doi:10.1166/jon.2014.1083 |
14 | WU C, CHO T J, XU J,et al .Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids[J].Physical Review E,2010,81:011406. doi:10.1103/physreve.81.011406 |
15 | KEBLINSKI P, PHILLPOT S R, CHOI S U S,et al .Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J].International Journal of Heat and Mass Transfer,2002,45(4): 855-863. doi:10.1016/s0017-9310(01)00175-2 |
16 | EVANS W, PRASHER R, FISH J,et al .Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J].International Journal of Heat and Mass Transfer,2008,51(5/6):1431-1438. doi:10.1016/j.ijheatmasstransfer.2007.10.017 |
17 | TAHMOORESSI H, KASAEIAN A, TAROKH A,et al .Numerical simulation of aggregation effect on nanofluids thermal conductivity using the lattice Boltzmann method[J].International Communications in Heat and Mass Transfer,2020,110:104408. doi:10.1016/j.icheatmasstransfer.2019.104408 |
18 | NAGVENKAR A P, PERELSHTEIN I, GEDANKEN A .Doping effect on the thermal conductivity of metal oxide nanofluids:insight and mechanistic investigation[J].The Journal of Physical Chemistry C,2017,. doi:10.1021/acs.jpcc.7b10020 |
121(47):26551-26557. doi:10.1021/acs.jpcc.7b10020 | |
19 | 胡志新,王宏亮,张陵 .二氧化硅薄膜材料热传导尺寸效应的实验研究[J].传感器技术,2003,22(5):13-14. doi:10.3969/j.issn.1000-9787.2003.05.005 |
HU Z X, WANG H L, ZHANG L .Experimental study of the thermal conduction size effect for silicon dioxide film[J].Transducer and Microsystem Technologies,2003,22(5):13-14. doi:10.3969/j.issn.1000-9787.2003.05.005 | |
20 | RINGL C, URBASSEK H M .A simple algorithm for constructing fractal aggregates with pre-determined fractal dimension[J].Computer Physics Communications,2013,184(7):1683-1685. doi:10.1016/j.cpc.2013.02.012 |
21 | QIAO G, LASFARGUES M, ALEXIADIS A,et al .Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J].Applied Thermal Engineering,2017,111:1517-1522. doi:10.1016/j.applthermaleng.2016.07.159 |
22 | QIAO G, ALEXIADIS A, DING Y .Simulation study of anomalous thermal properties of molten nitrate salt[J].Powder Technology,2017,314:660-664. doi:10.1016/j.powtec.2016.11.019 |
23 | JANZ G J, JAMES D W .Raman spectra and ionic interactions in molten nitrates[J].The Journal of Chemical Physics,1961,35(2):739-745. doi:10.1063/1.1731994 |
24 | HISATSUNE I C, DEVLIN J P, CALIFANO S .Urey-Bradley potential constants in nitrogen dioxide,nitrite ion and dinitrogen tetroxide[J].Spectrochimica Acta,1960,16(4):450-458. doi:10.1016/0371-1951(60)80039-2 |
25 | SHAO B, SUN Z W .Non-equilibrium molecular dynamics simulation of the thermal conductivity of crystals film[J].Aircraft Engineering and Aerospace Technology,2006,78:138-141. doi:10.1108/17488840610653450 |
26 | LEE S L, SAIDUR R, SABRI M F M,et al .Molecular dynamic simulation:Studying the effects of Brownian motion and induced micro-convection in nanofluids[J].Numerical Heat Transfer,2016,69(6):643-658. doi:10.1080/10407782.2015.1090765 |
27 | LEE S L, SAIDUR R, SABRI M F M,et al .Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states[J].Numerical Heat Transfer,2015,68(4):432-453. doi:10.1080/10407782.2014.986366 |
28 | WANG M, PAN N .Predictions of effective physical properties of complex multiphase materials[J].Materials Science and Engineering,2008,63(1):1-30. doi:10.1016/j.mser.2008.07.001 |
29 | WANG M, HE J, YU J,et al .Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials[J].International Journal of Thermal Sciences,2007,46(9):848-855. doi:10.1016/j.ijthermalsci.2006.11.006 |
30 | FANG W Z, ZHANG H, CHEN L,et al .Numerical predictions of thermal conductivities for the silica aerogel and its composites[J].Applied Thermal Engineering,2017,115:1277-1286. doi:10.1016/j.applthermaleng.2016.10.184 |
31 | TAHMOORESSI H, KASAEIAN A, YAVARINASAB A,et al .Numerical simulation of nanoparticles size/aspect ratio effect on thermal conductivity of nanofluids using lattice Boltzmann method[J].International Communications in Heat and Mass Transfer,2021,120:105033. doi:10.1016/j.icheatmasstransfer.2020.105033 |
32 | WANG J, WANG M, LI Z .A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J].International Journal of Thermal Sciences,2007,46(3):228-234. doi:10.1016/j.ijthermalsci.2006.04.012 |
33 | HE S, HABTE B T, JIANG F .LBM prediction of effective thermal conductivity of lithium-ion battery graphite anode[J].International Communications in Heat and Mass Transfer,2017,82:1-8. doi:10.1016/j.icheatmasstransfer.2017.02.015 |
34 | ZOU Q, HE X .On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J].Physics of Fluids,1997,9(6):1591-1598. doi:10.1063/1.869307 |
35 | SERRANO-LÓPEZ R, FRADERA J, CUESTA-LÓPEZ S .Molten salts database for energy applications[J].Chemical Engineering and Processing:Process Intensification,2013,73:87-102. doi:10.1016/j.cep.2013.07.008 |
36 | ZHANG P, CHENG J, JIN Y,et al .Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J].Solar Energy Materials and Solar Cells,2018,176:36-41. doi:10.1016/j.solmat.2017.11.011 |
37 | ZHOU F, CHENG G .Lattice Boltzmann model for predicting effective thermal conductivity of composite with randomly distributed particles:considering effect of interactions between particles and matrix[J].Computational Materials Science,2014,92:157-165. doi:10.1016/j.commatsci.2014.05.039 |
38 | ARAB M R, PATEYRON B, GANAOUI M EL,et al .Lattice boltzmann simulations for thermal conductivity estimation in heterogeneous materials[J].Defect and Diffusion Forum,2009,283/284/285/286:364-369. doi:10.4028/www.scientific.net/ddf.283-286.364 |
39 | REYES-MATA M, BLAWZDZIEWICZ J, WAJNRYB E,et al .Aggregation and effective thermal conductivity of nanofluids:dependence on cluster size and morphology[C]//ASME 2014 International Mechanical Engineering Congress and Exposition.Montreal,Quebec,Canada:ASME,2015:V007T09A013. doi:10.1115/imece2014-38256 |
40 | DU J, SU Q, LI L,et al .Evaluation of the influence of aggregation morphology on thermal conductivity of nanofluid by a new MPCD-MD hybrid method[J].International Communications in Heat and Mass Transfer,2021,127:105501. doi:10.1016/j.icheatmasstransfer.2021.105501 |
41 | WANG R, QIAN S, ZHANG Z .Investigation of the aggregation morphology of nanoparticle on the thermal conductivity of nanofluid by molecular dynamics simulations[J].International Journal of Heat and Mass Transfer,2018,127:1138-1146. doi:10.1016/j.ijheatmasstransfer.2018.08.117 |
42 | CUI L, YU Q, WEI G,et al .Mechanisms for thermal conduction in molten salt-based nanofluid[J].International Journal of Heat and Mass Transfer,2022,188:122648. doi:10.1016/j.ijheatmasstransfer.2022.122648 |
43 | NI H, WU J, SUN Z,et al .Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J].Renewable Energy,2019,136:955-967. doi:10.1016/j.renene.2019.01.044 |
44 | MAXWELL C I, SAOUDI M, PENCER J .Development of a polarizable interatomic potential for molten lithium,sodium,and potassium nitrate[J].The Journal of Physical Chemistry B,2020,124(23):4751-4761. doi:10.1021/acs.jpcb.0c02245 |
45 | CHLIATZOU C D, ASSAEL M J, ANTONIADIS K D,et al .Reference correlations for the thermal conductivity of 13 inorganic molten salts[J].Journal of Physical and Chemical Reference Data,2018,47:10.1063/1.5052343. doi:10.1063/1.5052343 |
[1] | 董军, 汤建方, 臧春城, 徐立, 王志峰. 抛物面槽式太阳能集热器球形接头测试系统的研制与应用[J]. 发电技术, 2024, 45(2): 291-298. |
[2] | 徐立, 孙飞虎, 李钧, 张强强. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术, 2023, 44(2): 229-234. |
[3] | 郭学伯, 范良迟, 许浈婧, 李有, 林俊, 陈林. 助力节能降碳的相变储热材料研究和应用进展[J]. 发电技术, 2023, 44(2): 201-212. |
[4] | 楚帅, 王爱华, 葛维春, 李音璇, 崔岱. 电网调控集中式储热降低弃风率分析方法[J]. 发电技术, 2023, 44(1): 18-24. |
[5] | Mohamed ABD-HAMID, 夏龙禹, 魏高升, 崔柳, 徐超, 杜小泽. 集成相变储热材料的光伏/热复合系统性能分析[J]. 发电技术, 2023, 44(1): 53-62. |
[6] | 张泽栋, 王维, 叶季蕾, 申洪. 储热型太阳能光热发电稳态功率模型[J]. 发电技术, 2022, 43(5): 731-739. |
[7] | 徐运飞, 吴水木, 李英杰. 面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J]. 发电技术, 2022, 43(5): 740-747. |
[8] | 李泽航, 周浩, 李浩秒, 王康丽, 蒋凯. 面向电力系统的液态金属电池储能技术[J]. 发电技术, 2022, 43(5): 760-774. |
[9] | 张辉, 顾秀芳, 陈艳宁, 罗振鹏, 王宸. 考虑风电消纳的热电厂蓄热罐效益成本分析[J]. 发电技术, 2022, 43(4): 664-672. |
[10] | 徐立, 孙飞虎, 李志, 张强强. 一种太阳能集热器流体平均温度计算方法[J]. 发电技术, 2022, 43(3): 405-412. |
[11] | 肖瑶, 钮文泽, 魏高升, 崔柳, 杜小泽. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术, 2022, 43(3): 392-404. |
[12] | 廖志荣, 李朋达, 田紫芊, 徐超, 魏高升. 非均匀翅片对级联相变储热系统热性能强化的研究[J]. 发电技术, 2022, 43(1): 83-91. |
[13] | 蔡肖, 徐阳, 杨超, 郑章靖. 一种相变储热器内翅片结构的快速优化算法[J]. 发电技术, 2022, 43(1): 92-101. |
[14] | 孙浩, 高博, 刘建兴. 塔式太阳能电站定日镜场布局研究[J]. 发电技术, 2021, 42(6): 690-698. |
[15] | 刘兰华, 狄林文, 董兴万, 王瑞林. 抛物槽式聚光太阳能集热回路动态特性研究[J]. 发电技术, 2021, 42(6): 673-681. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||