发电技术 ›› 2022, Vol. 43 ›› Issue (3): 405-412.DOI: 10.12096/j.2096-4528.pgt.21071
徐立1,2,3,4, 孙飞虎1,2,3,4, 李志2, 张强强2,3
收稿日期:
2021-09-01
出版日期:
2022-06-30
发布日期:
2021-08-13
作者简介:
基金资助:
Li XU1,2,3,4, Feihu SUN1,2,3,4, Zhi LI2, Qiangqiang ZHANG2,3
Received:
2021-09-01
Published:
2022-06-30
Online:
2021-08-13
Supported by:
摘要:
太阳能集热器是进行光热转换的重要设备,既可以应用于塔式热发电技术进行集中式能源利用,也可以应用于碟式热发电技术进行分布式能源利用,因此评估太阳能集热器的热性能十分重要。为此,提出了一种计算太阳能集热器流体平均温度的新方法,经实验验证,计算结果与实验数据符合较好,证明该方法可以较好地预测太阳能集热器的流体平均温度。为了更好地掌握太阳能集热器的热性能,研究了不同参数对太阳能集热器热效率的影响,结果表明:当输入功率恒定时,增大流量可以有效提高太阳能集热器的效率;当流量恒定时,太阳能集热器效率随着输入功率的增加会先升高后降低;太阳能集热器的效率与入口温度成反比,与环境温度成正比。
中图分类号:
徐立, 孙飞虎, 李志, 张强强. 一种太阳能集热器流体平均温度计算方法[J]. 发电技术, 2022, 43(3): 405-412.
Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector[J]. Power Generation Technology, 2022, 43(3): 405-412.
结构 | 管板数 | 单个管板吸热管数 | 外径/mm | 壁厚/mm | 采光口面积/m2 |
---|---|---|---|---|---|
腔式太阳能集热器 | 7 | 4 | 14 | 1.4 | 0.12 |
表1 太阳能集热器的结构参数
Tab. 1 Structural parameters of solar collector
结构 | 管板数 | 单个管板吸热管数 | 外径/mm | 壁厚/mm | 采光口面积/m2 |
---|---|---|---|---|---|
腔式太阳能集热器 | 7 | 4 | 14 | 1.4 | 0.12 |
参数 | Qnet,in /kW | Ta /K | Tfi /K | vw /(m·s-1) | εp | εr | kp / (W·m-1·K-1) | |
---|---|---|---|---|---|---|---|---|
数值 | 140 | 293.15 | 493.15 | 0.5 | 6 | 0.66 | 0.8 | 15 |
表2 参考工况下各参数的值
Tab. 2 Parameter values under reference condition
参数 | Qnet,in /kW | Ta /K | Tfi /K | vw /(m·s-1) | εp | εr | kp / (W·m-1·K-1) | |
---|---|---|---|---|---|---|---|---|
数值 | 140 | 293.15 | 493.15 | 0.5 | 6 | 0.66 | 0.8 | 15 |
参数 | 范围 | 不确定度 |
---|---|---|
输入功率 | 0~200 kW | ±0.5% |
入口温度 | 0~510 ℃ | ±1.5 ℃ |
出口温度 | 0~510 ℃ | ±1.5 ℃ |
环境温度 | 5~40 ℃ | ±1.5 ℃ |
体积流量 | 0~24 L/min | ±1% |
表3 测量参数的范围及不确定度
Tab. 3 Ranges and uncertainties of test parameters
参数 | 范围 | 不确定度 |
---|---|---|
输入功率 | 0~200 kW | ±0.5% |
入口温度 | 0~510 ℃ | ±1.5 ℃ |
出口温度 | 0~510 ℃ | ±1.5 ℃ |
环境温度 | 5~40 ℃ | ±1.5 ℃ |
体积流量 | 0~24 L/min | ±1% |
图7 不同工况下流体平均温度的计算结果与实验数据的最大相对误差
Fig. 7 Maximum relative error between calculation results and experimental data of average fluid temperature under different working conditions
1 | 张哲旸,巨星,潘信宇,等.太阳能光伏‒光热复合发电技术及其商业化应用[J].发电技术,2020,41(3):220-230. |
ZHANG Z Y, JU X, PAN X Y,et al. Photovoltaic/concentrated solar power hybrid technology and its commercial application[J].Power Generation Technology,2020,41(3):220-230. | |
2 | 张晓东,牛海明 .槽式光热电站镜场效率计算模型与仿真分析[J].分布式能源,2020,5(5):56-63. doi:10.16513/j.2096-2185.DE.2006010 |
ZHANG X D, NIU H M .Calculation model and simulation analysis of mirror field efficiency of through CSP station[J].Distributed Energy,2020,5(5):56-63. doi:10.16513/j.2096-2185.DE.2006010 | |
3 | 王泽众,黄平瑞,魏高升,等 .太阳能热发电固‒气两相化学储热技术研究进展[J].发电技术,2021,42(2):238-246. |
WANG Z Z, HUANG P R, WEI G S,et al .Research progress of solid-gas two-phase chemical heat storage technology for solar thermal power generation[J].Power Generation Technology,2021,42(2):238-246. | |
4 | 梁政,魏震波,孙舟倍,等 .光热发电商参与下的电力现货市场均衡分析[J].电力建设,2022,43(1):122-131. |
LIANG Z, WEI Z B, SUN Z B,et al .Analysis of the equilibrium of electricity spot market with the participation of CSP[J].Electric Power Construction,2022,43(1):122-131. | |
5 | XU C, LI X, WANG Z,et al .Effects of solid particle properties on the thermal performance of a packed-bed molten-salt thermocline thermal storage system[J].Applied Thermal Engineering,2013,57(1/2):69-80. doi:10.1016/j.applthermaleng.2013.03.052 |
6 | DU B C, HE Y L, ZHENG Z J,et al .Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver[J].Applied Thermal Engineering,2016,99:741-750. doi:10.1016/j.applthermaleng.2016.01.101 |
7 | Sandia National Lab .A final report on the Phase 1 testing of a molten-salt cavity receiver[R].Albuquerque:Sandia National Lab,1992. doi:10.2172/5042358 |
8 | WANG K, HE Y L, QIU Y,et al .A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver[J].Renewable Energy,2016,89:93-107. doi:10.1016/j.renene.2015.11.069 |
9 | TEHRANI S S M, TAYLOR R A .Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies[J].Applied Energy,2016,179:698-715. doi:10.1016/j.apenergy.2016.07.032 |
10 | LI X, KONG W, WANG Z,et al .Thermal model and thermodynamic performance of molten salt cavity receiver[J].Renewable Energy,2010,35(5):981-988. doi:10.1016/j.renene.2009.11.017 |
11 | RODRÍGUEZ-SÁNCHEZ M R, SÁNCHEZ- GONZÁLEZ A, MARUGÁN-CRUZ C,et al .New designs of molten-salt tubular-receiver for solar power tower[J].Energy Procedia,2014,49:504-513. doi:10.1016/j.egypro.2014.03.054 |
12 | RODRÍGUEZ-SÁNCHEZ M R, MARUGAN-CRUZ C, ACOSTA-IBORRA A,et al .Comparison of simplified heat transfer models and CFD simulations for molten salt external receiver[J].Applied Thermal Engineering,2014,73(1):993-1005. doi:10.1016/j.applthermaleng.2014.08.072 |
13 | FANG J, TU N, WEI J .Effects of absorber emissivity on thermal performance of a solar cavity receiver [J].Advances in Condensed Matter Physics,2014,2014:1-10. doi:10.1155/2014/564639 |
14 | FANG J B, TU N, WEI J J .Numerical investigation of start-up performance of a solar cavity receiver[J].Renewable Energy,2013,53:35-42. doi:10.1016/j.renene.2012.10.053 |
15 | CHANG Z, LI X, XU C,et al .Numerical simulation on the thermal performance of a solar molten salt cavity receiver[J].Renewable Energy,2014,69:324-335. doi:10.1016/j.renene.2014.03.044 |
16 | TEICHEL S H, FEIERABEND L, KLEIN S A,et al .An alternative method for calculation of semi-gray radiation heat transfer in solar central cavity receivers [J].Sol Energy,2012,86(6):1899-1909. doi:10.1016/j.solener.2012.02.035 |
17 | GONZALEZ M M, PALAFOX J H, ESTRADA C A .Numerical study of heat transfer by natural convection and surface thermal radiation in an open cavity receiver[J].Sol Energy,2012,86(4):1118-1128. doi:10.1016/j.solener.2012.01.005 |
18 | WAGNER M J .Simulation and predictive performance modeling of utility-scale central receiver system power plants[D].Wisconsin:University of Wisconsin Madison,2008. doi:10.1115/es2009-90132 |
19 | ZHANG Q, LI X, WANG Z,et al .Cavity receiver thermal performance analysis based on total heat loss coefficient and efficiency factor[J].International Journal of Energy Research,2018,42(6):2284-2289. doi:10.1002/er.3999 |
20 | YANG Z, GARIMELLA S V .Thermal analysis of solar thermal energy storage in a molten-salt thermocline [J].Solar Energy,2010,84(6):974-985. doi:10.1016/j.solener.2010.03.007 |
21 | ZHANG Q, LI X, CHANG C,et al .An experimental study:thermal performance of molten salt cavity receivers[J].Applied Thermal Engineering,2013,50 (1):334-341. doi:10.1016/j.applthermaleng.2012.07.028 |
22 | ZHANG Q, LI X, WANG Z,et al .Experimental and theoretical analysis of a dynamic test method for molten salt cavity receiver[J].Renewable Energy,2013,50:214-221. doi:10.1016/j.renene.2012.06.054 |
23 | LIAO Z, LI X, XU C,et al .Allowable flux density on a solar central receiver[J].Renewable Energy,2014,62:747-753. doi:10.1016/j.renene.2013.08.044 |
[1] | 董军, 汤建方, 臧春城, 徐立, 王志峰. 抛物面槽式太阳能集热器球形接头测试系统的研制与应用[J]. 发电技术, 2024, 45(2): 291-298. |
[2] | 徐立, 孙飞虎, 李钧, 张强强. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术, 2023, 44(2): 229-234. |
[3] | 徐运飞, 吴水木, 李英杰. 面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J]. 发电技术, 2022, 43(5): 740-747. |
[4] | 肖瑶, 钮文泽, 魏高升, 崔柳, 杜小泽. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术, 2022, 43(3): 392-404. |
[5] | 廖志荣, 李朋达, 田紫芊, 徐超, 魏高升. 非均匀翅片对级联相变储热系统热性能强化的研究[J]. 发电技术, 2022, 43(1): 83-91. |
[6] | 丁路, 肖欣悦, 奚正稳, 华文瀚. 塔式太阳能吸热器不同方位高空风速模拟计算及影响分析[J]. 发电技术, 2021, 42(6): 707-714. |
[7] | 罗玉浩, 吴国栋, 唐奕凡, 白鹏飞, 周国富. 内冷蒸发腔式太阳能集热器的设计与实验分析[J]. 发电技术, 2021, 42(6): 715-726. |
[8] | 孙浩, 高博, 刘建兴. 塔式太阳能电站定日镜场布局研究[J]. 发电技术, 2021, 42(6): 690-698. |
[9] | 刘兰华, 狄林文, 董兴万, 王瑞林. 抛物槽式聚光太阳能集热回路动态特性研究[J]. 发电技术, 2021, 42(6): 673-681. |
[10] | 徐立, 孙飞虎, 李钧, 张强强. 流量对抛物面槽式太阳能集热器传热特性影响的实验分析[J]. 发电技术, 2021, 42(6): 665-672. |
[11] | 刘兰华, 王瑞林, 洪慧. 塔式太阳能辅助燃气蒸汽联合循环钙基碳捕集系统设计[J]. 发电技术, 2021, 42(4): 517-524. |
[12] | 王泽众, 黄平瑞, 魏高升, 崔柳, 徐超, 杜小泽. 太阳能热发电固–气两相化学储热技术研究进展[J]. 发电技术, 2021, 42(2): 238-246. |
[13] | 刘尧东, 张燕平, 万亮, 高伟. 基于Al2O3纳米流体的槽式太阳能热发电集热器传热建模及性能分析[J]. 发电技术, 2021, 42(2): 230-237. |
[14] | 郑开云. 超临界二氧化碳循环发电技术应用[J]. 发电技术, 2020, 41(4): 399-406. |
[15] | 张哲旸,巨星,潘信宇,杨宇,徐超,杜小泽. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41(3): 220-230. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 300
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||