发电技术 ›› 2023, Vol. 44 ›› Issue (1): 63-77.DOI: 10.12096/j.2096-4528.pgt.22072
岳晓鹏1,2, 赵兴1, 闫慧琳1, 樊冰冰1, 黄浩1, 闫路遥1, 崔鹏1, 马峻峰1, 李美成1
收稿日期:
2022-04-07
出版日期:
2023-02-28
发布日期:
2023-03-02
作者简介:
基金资助:
Xiaopeng YUE1,2, Xing ZHAO1, Huilin YAN1, Bingbing FAN1, Hao HUANG1, Luyao YAN1, Peng CUI1, Junfeng MA1, Meicheng LI1
Received:
2022-04-07
Published:
2023-02-28
Online:
2023-03-02
Supported by:
摘要:
钙钛矿太阳能电池(perovskite solar cells,PSCs)由于光电转换效率高、制备工艺简单、成本低等优势受到广泛关注,电池效率已从3.8%提升到25.7%。目前,对基于SnO2电子传输层的n-i-p型平板结构电池的研究越来越多,但存在着工艺可重复性差、效率低等问题。针对n-i-p型平板结构PSCs的制备进行了系统的研究,包括导电基底的选择、钙钛矿制备工艺参数的优化以及电池存储环境。结果证明,上述参数对于电池均具有重要影响,并结合扫描电子显微镜、X射线衍射、吸收光谱分析了原因。在最优工艺条件下(掺锡氧化铟基底,PbI2 退火温度70 ℃(1 min),胺盐溶液滴加后静置时间不超过5 s,存储湿度4.5%),器件平均效率达到21.85%,最高效率达到23.47%,迟滞可忽略,具有良好的可重复性。研究结果可为制备重复性好、光电转换效率高的PSCs提供科学支撑。
中图分类号:
岳晓鹏, 赵兴, 闫慧琳, 樊冰冰, 黄浩, 闫路遥, 崔鹏, 马峻峰, 李美成. 基于SnO2电子传输层的n-i-p型钙钛矿太阳能电池关键技术研究[J]. 发电技术, 2023, 44(1): 63-77.
Xiaopeng YUE, Xing ZHAO, Huilin YAN, Bingbing FAN, Hao HUANG, Luyao YAN, Peng CUI, Junfeng MA, Meicheng LI. Research of Key Technologies for n-i-p Perovskite Solar Cells With SnO2 Electron Transport Layer[J]. Power Generation Technology, 2023, 44(1): 63-77.
TCO | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
FTO | 22.34 | 1.11 | 71.73 | 17.78 |
ITO | 23.27 | 1.11 | 75.43 | 19.47 |
表1 基于FTO和ITO基底的最优电池性能参数
Tab. 1 Best performing photovoltaic parameters of PSCs based on FTO and ITO substrates
TCO | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
FTO | 22.34 | 1.11 | 71.73 | 17.78 |
ITO | 23.27 | 1.11 | 75.43 | 19.47 |
T/℃ | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
65 | 19.55 | 1.06 | 71.18 | 14.86 |
70 | 23.77 | 1.14 | 75.05 | 20.26 |
75 | 24.12 | 1.10 | 73.44 | 19.42 |
表2 不同PbI2退火温度下最优电池特性参数值
Tab. 2 Best performing photovoltaic parameters of PSCs at different annealing temperatures of PbI2
T/℃ | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
65 | 19.55 | 1.06 | 71.18 | 14.86 |
70 | 23.77 | 1.14 | 75.05 | 20.26 |
75 | 24.12 | 1.10 | 73.44 | 19.42 |
t/s | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
55 | 23.27 | 1.11 | 75.43 | 19.47 |
60 | 23.77 | 1.14 | 75.05 | 20.26 |
65 | 23.73 | 1.10 | 75.11 | 19.54 |
表3 退火温度为70 ℃时,不同PbI2退火时间下最优电池特性参数
Tab. 3 Best performing photovoltaic parameters of PSCs based on PbI2 annealed at 70 ℃ with different annealing time
t/s | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
55 | 23.27 | 1.11 | 75.43 | 19.47 |
60 | 23.77 | 1.14 | 75.05 | 20.26 |
65 | 23.73 | 1.10 | 75.11 | 19.54 |
图12 退火温度为70 ℃时,不同PbI2 退火时间条件下钙钛矿薄膜的吸收光谱图
Fig. 12 Absorption spectra of perovskite thin films based on PbI2 annealed at 70 ℃ with different annealing time
t/s | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
0 | 24.17 | 1.16 | 79.57 | 22.26 |
5 | 24.21 | 1.16 | 78.80 | 22.07 |
10 | 24.21 | 1.11 | 79.56 | 21.29 |
表4 滴加胺盐溶液后不同静置时间下最优电池特性参数
Tab. 4 Best performing photovoltaic parameters of PSCs under different standing time after dropping amine salt solution
t/s | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
0 | 24.17 | 1.16 | 79.57 | 22.26 |
5 | 24.21 | 1.16 | 78.80 | 22.07 |
10 | 24.21 | 1.11 | 79.56 | 21.29 |
图17 滴加胺盐溶液后不同静置时间所得钙钛矿薄膜吸收光谱图
Fig. 17 Absorption spectra of perovskite thin films obtained after dripping amine salt solution for different standing time
相对湿度/% | 测试时间 | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|---|
4.5 | 初始值 | 23.61 | 1.16 | 78.90 | 21.56 |
1天后 | 24.11 | 1.16 | 76.56 | 21.36 | |
20 | 初始值 | 23.50 | 1.11 | 69.84 | 18.14 |
1天后 | 23.60 | 1.05 | 48.77 | 12.12 |
表5 不同存储湿度条件下最优太阳电池性能参数表
Tab. 5 Photovoltaic parameters of PSCs under different storage humidity conditions
相对湿度/% | 测试时间 | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|---|
4.5 | 初始值 | 23.61 | 1.16 | 78.90 | 21.56 |
1天后 | 24.11 | 1.16 | 76.56 | 21.36 | |
20 | 初始值 | 23.50 | 1.11 | 69.84 | 18.14 |
1天后 | 23.60 | 1.05 | 48.77 | 12.12 |
图21 15个优化工艺后太阳电池正、反扫性能参数箱式图对比
Fig. 21 Box diagram comparison of performance parameters of 15 PSCs scanned at forward and backward direction using optimized processes
冠军电池 | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
反扫 | 24.82 | 1.144 | 79.76 | 22.65 |
正扫 | 24.89 | 1.161 | 81.19 | 23.47 |
表6 最优条件下冠军器件光伏特性参数
Tab. 6 Photovoltaic parameters of champion PSCs under optimal condition
冠军电池 | Jsc/(mA/cm2) | Voc/V | FF/% | PCE/% |
---|---|---|---|---|
反扫 | 24.82 | 1.144 | 79.76 | 22.65 |
正扫 | 24.89 | 1.161 | 81.19 | 23.47 |
1 | CHU S, MAJUMDAR A .Opportunities and challenges for a sustainable energy future[J].Nature,2012,488(7411):294-303. doi:10.1038/nature11475 |
2 | 李春曦,王佳,叶学民,等 .我国新能源发展现状及前景[J].电力科学与工程,2012,28(4):1-8. doi:10.3969/j.issn.1672-0792.2012.04.001 |
Li C X, Wang J, Ye X M,et al .Development and prospects of new energy in China[J].Electric Power Science and Engineering,2012,28(4):1-8. doi:10.3969/j.issn.1672-0792.2012.04.001 | |
3 | 韩芳 .我国可再生能源发展现状和前景展望[J].可再生能源,2010,28(4):137-140. doi:10.3969/j.issn.1671-5292.2010.04.033 |
HAN F .Development status and prospect of renewable energy in China[J].Renewable Energy Resources,2010,28(4):137-140. doi:10.3969/j.issn.1671-5292.2010.04.033 | |
4 | 丁峰,李晓刚,梁泽琪,等 .国外可再生能源发展经验及其对我国相关扶持政策的启示[J].电力建设,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 |
DING F, LI X G, LIANG Z Q,et al .Review of foreign experience in promoting renewable energy development and inspiration to China[J].Electric Power Construction,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 | |
5 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2021,43(1):54-64. |
Jiang H L, Liu Y X, Feng Y M,et al .Analysis of power generation technology trend in 14th five-year plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2021,43(1):54-64. | |
6 | 童光毅 .基于双碳目标的智慧能源体系构建[J].智慧电力,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 |
TONG G Y .Construction of smart energy system based on dual carbon goal[J].Smart Power,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 | |
7 | 刘斌,谈竹奎,唐赛秋,等 .基于数据预测启发式算法的光伏电池参数识别[J].电力系统保护与控制,2021,49(23):72-79. |
LIU B, TAN Z K, TANG S Q,et al .Photovoltaic cell parameter extraction using data prediction based on a meta-heuristic algorithm[J].Power System Protection and Control,2021,49(23):72-79. | |
8 | National Renewable Energy Laboratory .Best research-cell efficiency chart[EB/OL].[2022-03-12].. |
9 | Meng L, You J, Yang Y .Addressing the stability issue of perovskite solar cells for commercial applications[J].Nature Communications,2018,9(1):5265. doi:10.1038/s41467-018-07255-1 |
10 | Roy P, Kumar Sinha N, Tiwari S,et al .A review on perovskite solar cells:Evolution of architecture,fabrication techniques,commercialization issues and status[J].Solar Energy,2020,198:665-688. doi:10.1016/j.solener.2020.01.080 |
11 | Reddy S H, Di Giacomo F, Di Carlo A .Low‐temperature‐processed stable perovskite solar cells and modules:a comprehensive review[J].Advanced Energy Materials,2022:2103534. doi:10.1002/aenm.202103534 |
12 | Kojima A, Teshima K, Shirai Y,et al .Organometal halide perovskites as visible-light sensitizer for photovoltaic cells[J].Journal of American Chemical Society,2009,131:6050-6051. doi:10.1021/ja809598r |
13 | Kim H S, Lee C R, Im J H,et al .Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J].Scientific Reports,2012,2:591-598. doi:10.1038/srep00591 |
14 | Li Y, Xie H, Lim E L,et al .Recent progress of ctical interface engineering for highly efficient and stable perovskite solar cells[J].Advanced Energy Materials,2022,12(5):1-31. doi:10.1002/aenm.202102730 |
15 | Jiang Q, Zhang X, You J .SnO2 :a wonderful electron transport layer for perovskite solar cells[J].Small,2018:1801154. doi:10.1002/smll.201801154 |
16 | Park S Y, Zhu K .Advances in SnO2 for efficient and stable n‐i‐p perovskite solar cells[J].Advanced Materials,2022:2110438. doi:10.1002/adma.202110438 |
17 | Song J, Zheng E, Wang X F,et al .Low-temperature-processed ZnO-SnO2 nanocomposite for efficient planar perovskite solar cells[J].Solar Energy Materials and Solar Cells,2016,144:623-630. doi:10.1016/j.solmat.2015.09.054 |
18 | Anaraki E H, Kermanpur A, Steier L,et al .Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J].Energy and Environmental Science,2016,9(10):3128-3134. doi:10.1039/c6ee02390h |
19 | Yoo J J, Seo G, Chua M R,et al .Efficient perovskite solar cells via improved carrier management[J].Nature,2021,590(7847):587-593. doi:10.1038/s41586-021-03285-w |
20 | Min H, Lee D Y, Kim J,et al .Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J].Nature,2021,598(7881):444-450. doi:10.1038/s41586-021-03964-8 |
21 | Jiang Q, Zhao Y, Zhang X,et al .Surface passivation of perovskite film for efficient solar cells[J].Nature Photonics,2019,13(7):460-466. doi:10.1038/s41566-019-0398-2 |
22 | Jiang Q, Zhang L, Wang H,et al .Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2 PbI3-based perovskite solar cells[J].Nature Energy,2017,2(1):16177. doi:10.1038/nenergy.2017.60 |
23 | Jiang Q, Chu Z, Wang P,et al .Planar-structure perovskite solar cells with efficiency beyond 21%[J].Advanced Materials,2017,1703852:1-7. doi:10.1002/adma.201703852 |
24 | Liu D, Zheng H, Ahmed Y,et al .Enhanced photovoltaic performance of SnO2 based flexible perovskite solar cells via introducing interfacial dipolar layer and defect passivation[J].Journal of Power Sources,2022,519:230814. doi:10.1016/j.jpowsour.2021.230814 |
25 | Xiong Z, Chen X, Zhang B,et al .Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%[J].Advanced Materials,2022,34(8):1-10. doi:10.1002/adma.202106118 |
26 | Yu X, Lv Y, Xue B,et al .Multiple bonding effects of 1-methanesulfonyl-piperazine on the two-step processed perovskite towards efficient and stable solar cells[J].Nano Energy,2022,93:106856. doi:10.1016/j.nanoen.2021.106856 |
27 | LU H, KRISHNA A, ZAKEERUDDIN S M,et al .Compositional and interface engineering of organic-inorganic lead halide perovskite solar Cells[J].iScience,2020,23(8):1-14. doi:10.1016/j.isci.2020.101359 |
28 | ZHANG F, ZHU K .Additive engineering for efficient and stable perovskite solar cells[J].Advanced Energy Materials,2020,10(13):1-26. doi:10.1002/aenm.201902579 |
29 | LI T, RUI Y, ZHANG X,et al .Anatase TiO2 nanorod arrays as high-performance electron transport layers for perovskite solar cells[J].Journal of Alloys and Compounds, 2020, 849: 156629. doi:10.1016/j.jallcom.2020.156629 |
30 | ZHANG M, WILKINSON B, LIAO Y,et al .Electrode design to overcome substrate transparency limitations for highly efficient 1 cm2 mesoscopic perovskite solar cells[J].Joule,2018,2(12):2694-2705. doi:10.1016/j.joule.2018.08.012 |
31 | CHEN Y, MENG Q, XIAO Y,et al .Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells[J].ACS Applied Materials and Interfaces,2019,11(47):44101-44108. doi:10.1021/acsami.9b13648 |
32 | HU L, SHAO G, JIANG T,et al .Investigation of the interaction between perovskite films with moisture via in situ electrical resistance measurement[J].ACS Applied Materials and Interfaces,2015,7(45):25113-25120. doi:10.1021/acsami.5b06268 |
[1] | 袁鑫, 刘骏, 陈衡, 潘佩媛, 徐钢, 王修彦. 碳捕集技术应用对燃煤机组调峰能力的影响[J]. 发电技术, 2024, 45(3): 373-381. |
[2] | 袁家海, 胡玥琳, 张健. 基于改进三阶段松弛测量-数据包络模型的火电上市公司碳排放效率评估研究[J]. 发电技术, 2024, 45(3): 458-467. |
[3] | 张洺驿, 黄鹏, 王亚午. 环形介电弹性体发电机的输出特性研究[J]. 发电技术, 2024, 45(3): 517-526. |
[4] | 叶健强, 孙敦虎. 碳交易条件下基于鲁棒优化的电源规划研究[J]. 发电技术, 2024, 45(3): 566-574. |
[5] | 郭镥, 刘永礼, 张媛, 吴倩, 李跃辉, 侯晓宇, 张雅静. 实用化数据同步技术在新型配电系统规划多人协同机制中的应用[J]. 发电技术, 2024, 45(2): 363-372. |
[6] | 付红军, 朱劭璇, 王步华, 谢岩, 熊浩清, 唐晓骏, 杜晓勇, 李程昊, 李晓萌. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362. |
[7] | 付小标, 侯嘉琪, 李宝聚, 温亚坤, 赖晓文, 郭雷, 王志伟, 王尧, 张海锋, 李德鑫. 一种二模态天气分型方法及其在光伏功率概率预测的应用[J]. 发电技术, 2024, 45(2): 299-311. |
[8] | 杨正, 孙亦鹏, 温志强, 程亮, 李战国. 深度调峰工况下超临界机组的干湿态转换策略研究[J]. 发电技术, 2024, 45(2): 233-239. |
[9] | 李展, 杨振勇, 刘磊, 陈振山, 季卫鸣, 洪烽. 火电机组深度调峰工况下炉侧蓄热系数对一次调频能力的影响分析[J]. 发电技术, 2024, 45(2): 226-232. |
[10] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[11] | 王翔宇, 陈武晖, 郭小龙, 常喜强. 发电系统数字化研究综述[J]. 发电技术, 2024, 45(1): 120-141. |
[12] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[13] | 张叶青, 陈文彬, 徐律军, 江兴稳. 面向多虚拟电厂的分层分区多层互补动态聚合调控策略[J]. 发电技术, 2024, 45(1): 162-169. |
[14] | 柯明辉, 赖林. 常温空气下外露电极结构的电气体发电实验研究[J]. 发电技术, 2024, 45(1): 180-188. |
[15] | 王若为, 李音璇, 葛维春, 张诗钽, 刘闯, 楚帅. 沙漠光伏电能外送技术综述[J]. 发电技术, 2024, 45(1): 32-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||