Power Generation Technology ›› 2023, Vol. 44 ›› Issue (5): 634-644.DOI: 10.12096/j.2096-4528.pgt.23004
• Virtual Power Plant Planning, Scheduling and Control Technology • Previous Articles Next Articles
Haibin YU1, Yuchen ZHANG2, Yangyang LIU3, Zengjie LU1, Jinde WENG1
Received:
2023-01-11
Published:
2023-10-31
Online:
2023-10-30
Supported by:
CLC Number:
Haibin YU, Yuchen ZHANG, Yangyang LIU, Zengjie LU, Jinde WENG. Optimal Dispatching Bidding Strategy of Multi-Agent Virtual Power Plant Participating in Electricity Market Under Carbon Trading Mechanism[J]. Power Generation Technology, 2023, 44(5): 634-644.
地区 | 场景 | 试点项目 | 响应资源 | 特征 |
---|---|---|---|---|
上海 | 削峰填谷、商业楼宇、能源管理 | 黄埔商业需求侧管理示范项目,嘉定泛在电力物联网智慧充放电试点项目 | 工商业负荷、储能及电动汽车等 | 以商业楼宇及电动汽车为主的VPP体系 |
江苏 | 需求响应、新能源消纳 | 大规模源网荷友好互动系统示范工程 | 可中断/可调节负荷 | 国内规模最大源网荷系统 |
浙江 | 需求响应、削峰填谷 | 丽水和宁海VPP试点项目,宁波离网光伏VPP,义乌小商品市场等 | 储能、充电桩、空调及照明等 | “削峰填谷”让利消费侧,国内单次响应体量最大 |
冀北 | 新能源消纳、广域需求响应 | 泛在电力物联网VPP示范工程 | 光伏、电采暖 | 多主体参与 |
Tab. 1 Development status of domestic VPP
地区 | 场景 | 试点项目 | 响应资源 | 特征 |
---|---|---|---|---|
上海 | 削峰填谷、商业楼宇、能源管理 | 黄埔商业需求侧管理示范项目,嘉定泛在电力物联网智慧充放电试点项目 | 工商业负荷、储能及电动汽车等 | 以商业楼宇及电动汽车为主的VPP体系 |
江苏 | 需求响应、新能源消纳 | 大规模源网荷友好互动系统示范工程 | 可中断/可调节负荷 | 国内规模最大源网荷系统 |
浙江 | 需求响应、削峰填谷 | 丽水和宁海VPP试点项目,宁波离网光伏VPP,义乌小商品市场等 | 储能、充电桩、空调及照明等 | “削峰填谷”让利消费侧,国内单次响应体量最大 |
冀北 | 新能源消纳、广域需求响应 | 泛在电力物联网VPP示范工程 | 光伏、电采暖 | 多主体参与 |
类型 | 谷时段 | 平时段 | 峰时段 |
---|---|---|---|
售电价格 | 165.35 | 314.50 | 465.30 |
购电价格 | 326.20 | 624.80 | 922.60 |
Tab. 2 Power prices
类型 | 谷时段 | 平时段 | 峰时段 |
---|---|---|---|
售电价格 | 165.35 | 314.50 | 465.30 |
购电价格 | 326.20 | 624.80 | 922.60 |
内部成员 | 独立运营收益 | VPP中分配的收益 |
---|---|---|
WT | 23 565 | 24 453 |
PV | 10 007 | 10 056 |
ES | 705 | 1 086 |
GT | 2 631 | 4 295 |
VPP | 0 | 27 848 |
Tab. 3 VPP internal member income
内部成员 | 独立运营收益 | VPP中分配的收益 |
---|---|---|
WT | 23 565 | 24 453 |
PV | 10 007 | 10 056 |
ES | 705 | 1 086 |
GT | 2 631 | 4 295 |
VPP | 0 | 27 848 |
场景 | 填谷调峰 | 削峰调峰 | ||
---|---|---|---|---|
时段 | 价格/元 | 时段 | 价格/元 | |
1 | 01:00—08:00 | 350 | 09:00—12:00,18:00—21:00 | 500 |
2 | 01:00—08:00 | 350 | ||
3 | 09:00—12:00,18:00—21:00 | 500 | ||
4 | 01:00—04:00 05:00—08:00 | 250 450 | ||
5 | 09:00—10:00,18:00—19:00 | 400 | ||
11:00—12:00,20:00—21:00 | 600 |
Tab. 4 Different scenarios in the PRM
场景 | 填谷调峰 | 削峰调峰 | ||
---|---|---|---|---|
时段 | 价格/元 | 时段 | 价格/元 | |
1 | 01:00—08:00 | 350 | 09:00—12:00,18:00—21:00 | 500 |
2 | 01:00—08:00 | 350 | ||
3 | 09:00—12:00,18:00—21:00 | 500 | ||
4 | 01:00—04:00 05:00—08:00 | 250 450 | ||
5 | 09:00—10:00,18:00—19:00 | 400 | ||
11:00—12:00,20:00—21:00 | 600 |
场景 | VPP内部收益 | 购电成本收益 | 调峰收益 | VPP运营收益 |
---|---|---|---|---|
1 | 39 109 | -15 848 | 21 303 | 44 604 |
2 | 44 629 | -11 357 | 5 232 | 38 464 |
3 | 43 216 | -20 056 | 16 089 | 39 257 |
4 | 44 453 | -11 537 | 5 683 | 38 537 |
5 | 43 123 | -20 082 | 16 290 | 39 351 |
Tab. 5 Income of VPP in different scenarios
场景 | VPP内部收益 | 购电成本收益 | 调峰收益 | VPP运营收益 |
---|---|---|---|---|
1 | 39 109 | -15 848 | 21 303 | 44 604 |
2 | 44 629 | -11 357 | 5 232 | 38 464 |
3 | 43 216 | -20 056 | 16 089 | 39 257 |
4 | 44 453 | -11 537 | 5 683 | 38 537 |
5 | 43 123 | -20 082 | 16 290 | 39 351 |
1 | 陈逸文,赵晋斌,李军舟,等 .电力低碳转型背景下氢储能的挑战与展望[J].发电技术,2023,44(3):296-304. doi:10.12096/j.2096-4528.pgt.23022 |
CHEN Y W, ZHAO J B, LI J Z,et al .Challenges and prospects of hydrogen energy storage under the background of low-carbon transformation of power industry[J].Power Generation Technology,2023,44(3):296-304. doi:10.12096/j.2096-4528.pgt.23022 | |
2 | 程松,周鑫,任景,等 .面向多级市场出清的负荷聚合商联合交易策略[J].电力系统保护与控制,2022,50(20):158-167. |
CHENG S, ZHOU X, REN J,et al .Bidding strategy for load aggregators in a multi-stage electricity market[J].Power System Protection and Control,2022,50(20):158-167. | |
3 | 杨秀,杜楠楠,孙改平,等 .考虑需求响应的虚拟电厂双层优化调度[J].电力科学与技术学报,2022,37(2):137-146. |
YANG X, DU N N, SUN G P,et al .Bi-level optimization dispatch of virtual power plants considering the demand response[J].Journal of Electric Power Science and Technology,2022,37(2):137-146. | |
4 | 闫鹏,曾四鸣,李铁成,等 .基于改进量子遗传算法的虚拟电厂在多时间尺度下参与AGC优化调度[J].电网与清洁能源,2023,39(3):23-32. doi:10.3969/j.issn.1674-3814.2023.03.004 |
YAN P, ZENG S M, LI T C,et al .Optimal scheduling of virtual power plant participating in AGC based on improved quantum genetic algorithm on multi-time scale[J].Power System and Clean Energy,2023,39(3):23-32. doi:10.3969/j.issn.1674-3814.2023.03.004 | |
5 | 朱永胜,苗阳,谢晓峰,等 .新能源微电网多层级车网协同优化策略[J].智慧电力,2023,51(2):61-68. doi:10.3969/j.issn.1673-7598.2023.02.010 |
ZHU Y S, MIAO Y, XIE X F,et al .Multi-level vehicle-grid collaborative optimization strategy for new energy microgrid[J].Smart Power,2023,51(2): 61-68. doi:10.3969/j.issn.1673-7598.2023.02.010 | |
6 | 刘建伟,李学斌,刘晓鸥 .有源配电网中分布式电源接入与储能配置[J].发电技术,2022,43(3):476-484. doi:10.12096/j.2096-4528.pgt.21068 |
LIU J W, LI X B, LIU X O .Distributed power access and energy storage configuration in active distribution network[J].Power Generation Technology,2022,43(3):476-484. doi:10.12096/j.2096-4528.pgt.21068 | |
7 | 李军徽,罗铉众,朱星旭,等 .基于绿证-碳交易机制的风-火-蓄联合调峰控制策略[J].电力建设,2023,44(7):11-20. doi:10.12204/j.issn.1000-7229.2023.07.002 |
LI J H, LUO X Z, ZHU X X,et al .Peak regulation control strategy of wind-thermal-storage combined based on green certificate-carbon trading mechanism[J].Electric Power Construction,2023,44(7):11-20. doi:10.12204/j.issn.1000-7229.2023.07.002 | |
8 | 张立辉,戴谷禹,聂青云,等 .碳交易机制下计及用电行为的虚拟电厂经济调度模型[J].电力系统保护与控制,2020,48(24):154-163. doi:10.19783/j.cnki.pspc.200126 |
ZHANG L H, DAI G Y, NIE Q Y,et al .Economic dispatch model of virtual power plant considering electricity consumption under a carbon trading mechanism[J].Power System Protection and Control,2020,48(24):154-163. doi:10.19783/j.cnki.pspc.200126 | |
9 | 许福鹿,周任军,曹俊波,等 .多种市场下虚拟电厂电-热-气协调优化调度[J].电力系统及其自动化学报,2019,31(9):35-42. |
XU F L, ZHOU R J, CAO J B,et al .Coordinated optimal dispatching of power-heat-gas for virtual power plant participating in multiple markets[J].Proceedings of the CSU-EPSA,2019,31(9):35-42. | |
10 | 李旭东,艾欣,胡俊杰,等 .计及碳交易机制的核-火-虚拟电厂三阶段联合调峰策略研究[J].电网技术,2019,43(7):2460-2470. doi:10.13335/j.1000-3673.pst.2018.2133 |
LI X D, AI X, HU J J,et al .Three-stage combined peak regulation strategy for nuclear-thermal-virtual power plant considering carbon trading mechanism[J].Power System Technology,2019,43(7):2460-2470. doi:10.13335/j.1000-3673.pst.2018.2133 | |
11 | 应志玮,余涛,黄宇鹏,等 .上海虚拟电厂运营市场出清的研究与实现[J].电力学报,2020,35(2):129-134. |
YING Z W, YU T, HUANG Y P,et al .Research on clearing the operation market of Shanghai virtual power plant[J].Journal of Electric Power,2020,35(2):129-134. | |
12 | 岳铂雄,熊厚博,郭亦宗,等 .碳交易机制推动电力行业低碳转型[J].电气自动化,2022,44(4):1-3,7. doi:10.3969/j.issn.1000-3886.2022.04.001 |
YUE B X, XIONG H B, GUO Y Z,et al .Carbon transaction mechanism promotes low-carbon transformation of power industry[J].Electrical Automation,2022,44(4):1-3,7. doi:10.3969/j.issn.1000-3886.2022.04.001 | |
13 | 杨梓俊,荆江平,邓星,等 .虚拟电厂参与江苏电网辅助服务市场的探讨[J].电力需求侧管理,2021,23(4):90-95. doi:10.3969/j.issn.1009-1831.2021.04.017 |
YANG Z J, JING J P, DENG X,et al .Discussion on virtual power plant participating in ancillary service market of Jiangsu power grid[J].Power Demand Side Management,2021,23(4):90-95. doi:10.3969/j.issn.1009-1831.2021.04.017 | |
14 | 雷旭,马鹏飞,宋智帅,等 .计及风电预测误差的柔性负荷日内调度模型[J].发电技术,2022,43(3):485-491. doi:10.12096/j.2096-4528.pgt.20083 |
LEI X, MA P F, SONG Z S,et al .A flexible intraday load dispatch model considering wind power prediction errors[J].Power Generation Technology,2022,43(3):485-491. doi:10.12096/j.2096-4528.pgt.20083 | |
15 | 谈金晶,李扬 .多能源协同的交易模式研究综述[J].中国电机工程学报,2019,39(22):6483-6497. |
TAN J J, LI Y .Review on transaction mode in multi-energy collaborative market[J].Proceedings of the CSEE,2019,39(22):6483-6497. | |
16 | 田立亭,程林,郭剑波,等 .虚拟电厂对分布式能源的管理和互动机制研究综述[J].电网技术,2020,44(6):2097-2108. doi:10.13335/j.1000-3673.pst.2019.2193 |
TIAN L T, CHENG L, GUO J B,et al .A review on the study of management and interaction mechanism for distributed energy in virtual power plants[J].Power System Technology,2020,44(6):2097-2108. doi:10.13335/j.1000-3673.pst.2019.2193 | |
17 | 王帅,帅轩越,王智冬,等 .基于纳什议价方法的虚拟电厂分布式多运营主体电能交易机制[J].电力建设,2022,43(3):141-148. |
WANG S, SHUAI X Y, WANG Z D,et al .Distributed electricity trading mechanism of multi-operator virtual power plant based on Nash bargaining method[J].Electric Power Construction,2022,43(3):141-148. | |
18 | 麻秀范,余思雨,朱思嘉,等 .基于多因素改进Shapley 的虚拟电厂利润分配[J].电工技术学报,2020,35(S02):585-595. |
MA X F, YU S Y, ZHU S J,et al .Profit allocation to virtual power plant members based on improved multifactor shapley value method[J].Transactions of China Electrotechnical Society,2020,35(S2):585-595. | |
19 | 匡熠,王秀丽,王建学,等 .基于stackelberg博弈的虚拟电厂能源共享机制[J].电网技术,2020,44(12):4556-4564. |
KUANG Y, WANG X L, WANG J X,et al .Virtual power plant energy sharing mechanism based on stackelberg game[J].Power System Technology,2020,44(12):4556-4564. | |
20 | 张高,王旭,蒋传文 .基于主从博弈的含电动汽车虚拟电厂协调调度[J].电力系统自动化,2018,42(11):48-55. doi:10.7500/AEPS20170607005 |
ZHANG G, WANG X, JIANG C W .Stackelberg game based coordinated dispatch of virtual power plant considering electric vehicle management[J].Automation of Electric Power Systems,2018,42(11):48-55. doi:10.7500/AEPS20170607005 | |
21 | 高赐威,李倩玉,李慧星,等 .基于负荷聚合商业务的需求响应资源整合方法与运营机制[J].电力系统自动化,2013,37(17):78-86. doi:10.7500/AEPS201211091 |
GAO C W, LI Q Y, LI H X,et al .Methodology and operation mechanism of demand response resources integration based on load aggregator[J].Automation of Electric Power Systems,2013,37(17):78-86. doi:10.7500/AEPS201211091 | |
22 | 谢平平,朱继忠,禤培正,等 .源荷协同辅助服务市场框架及经济性分析[J].南方电网技术,2017,11(2):50-56. doi:10.13648/j.cnki.issn1674-0629.2017.02.008 |
XIE P P, ZHU J Z, XUAN P Z,et al .Market framework and economic analysis of generation-demand cooperative ancillary service[J].Southern Power System Technology,2017,11(2):50-56. doi:10.13648/j.cnki.issn1674-0629.2017.02.008 | |
23 | 秦玉杰 .分布式电源参与电力辅助服务的机制研究[D].淄博:山东理工大学,2020. |
QIN Y J .Research on the mechanism of distributed generation participating in power auxiliary service[D].Zibo:Shandong University of Technology,2020. | |
24 | 史沛然,李彦宾,江长明,等 .第三方独立主体参与华北电力调峰市场规则设计与实践[J].电力系统自动化,2021,45(5):168-174. doi:10.7500/AEPS20200609005 |
SHI P R, LI Y B, JIANG C M,et al .Rule design and practice for third-party independent entities participating in electric power peak regulation auxiliary service market of North China[J].Automation of Electric Power Systems,2021,45(5):168-174. doi:10.7500/AEPS20200609005 | |
25 | 宁剑,江长明,张哲,等 .可调节负荷资源参与电网调控的思考与技术实践[J].电力系统自动化,2020,44(17):1-8. doi:10.7500/AEPS20191226007 |
NING J, JIANG C M, ZHANG Z,et al .Thinking and technical practice of adjustable load resources participating in dispatching and control of power grid[J].Automation of Electric Power Systems,2020,44 (17):1-8. doi:10.7500/AEPS20191226007 | |
26 | 李博嵩,王旭,蒋传文,等 .广泛负荷聚集商市场策略建模及风险效益分析[J].电力系统自动化,2018,42(16):119-126. doi:10.7500/AEPS20170511006 |
LI B S, WANG X, JIANG C W,et al .Market strategy modeling and risk profit analysis of demand-side resource aggregator[J].Automation of Electric Power Systems,2018,42(16):119-126. doi:10.7500/AEPS20170511006 | |
27 | 李翔宇,赵冬梅 .计及可调资源动态特性的虚拟电厂多级优化配置[J].电力系统自动化,2020,44(13):17-24. doi:10.7500/AEPS20190909011 |
LI X Y, ZHAO D M .Multi-level optimal configuration of virtual power plant considering dynamic characteristics of adjustable resources[J].Automation of Electric Power Systems,2020,44 (13):17-24. doi:10.7500/AEPS20190909011 | |
28 | 杨雪,金孝俊,王海洋,等 .基于区块链的绿证和碳交易市场联合激励机制[J].电力建设,2022,43(6):24-33. doi:10.12204/j.issn.1000-7229.2022.06.003 |
YANG X, JIN X J, WANG H Y,et al .Blockchain-based joint incentive mechanism for tradable green certificate and carbon trading market based on blockchain[J].Electric Power Construction,2022,43(6):24-33. doi:10.12204/j.issn.1000-7229.2022.06.003 | |
29 | 吉斌,昌力,陈振寰,等 .基于区块链技术的电力碳排放权交易市场机制设计与应用[J].电力系统自动化,2021,45(12):1-10. |
JI B, CHANG L, CHEN Z H,et al .Blockchain technology based design and application of market mechanism for power carbon emission allowance trading[J].Automation of Electric Power Systems,2021,45(12):1-10. | |
30 | 中国致公党上海市委会课题组 .加快构建我国现代能源体系,统筹实现“双碳”目标[J].中国发展,2022,22(3):3-9. |
Research Group of Shanghai Municipal Committee of China ZhiGong Party .Accelerate the development of China’s modern energy system and coordinate efforts to achieve the “dual carbon” goal[J].China Development,2022,22(3):3-9. |
[1] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
[2] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
[3] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[4] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[5] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
[6] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[7] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[8] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[9] | Zhichao LIU,Hongbin WANG,Hao SHA,Jinshu YANG,Shengxian CAO. Status and Prospect Analysis of Wind Power Utilization Technology in China [J]. Power Generation Technology, 2019, 40(4): 389-395. |
[10] | Dongsheng YANG,Daohao WANG,Bowen ZHOU,Qiyu CHEn,Zhile YANG,Guoyi XU,Mingjian CUI. Key Technologies and Application Prospects of Ubiquitous Power Internet of Things [J]. Power Generation Technology, 2019, 40(2): 107-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||