Power Generation Technology ›› 2023, Vol. 44 ›› Issue (2): 244-252.DOI: 10.12096/j.2096-4528.pgt.22051
• New Energy • Previous Articles Next Articles
Yongbao YANG1, Bo ZHANG1, Lichang ZHANG2, Matthias Rätsch3, Yuchao SUO1
Received:
2022-05-03
Published:
2023-04-30
Online:
2023-04-28
Supported by:
CLC Number:
Yongbao YANG, Bo ZHANG, Lichang ZHANG, Matthias Rätsch, Yuchao SUO. Design of Electromagnetic Vibration Power Generation Based on Spring Amplitude Amplification[J]. Power Generation Technology, 2023, 44(2): 244-252.
1 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al . Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutral[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
2 | 朱凯,张艳红 .“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 |
ZHU K, ZHANG Y H .Research on application of hydrogen in power industry under “double carbon” circumstanc[J].Power Generation Technology,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 | |
3 | WANG K, WANG G, DAI X,et al .Implementation of dual-nonlinearity mechanism for bandwidth extension of MEMS multi-modal energy harvester[J].Journal of Microelectromechanical Systems,2020,30(1):2-14. doi:10.1109/jmems.2020.3036901 |
4 | SRIRAMDAS R, PRATAP R .Scaling and performance analysis of MEMS piezoelectric energy harvesters[J].Journal of Microelectromechanical Systems,2017,26(3):679-690. doi:10.1109/jmems.2017.2689326 |
5 | QUATTROCCHI A, FRENI F, MONTANINI R .Power conversion efficiency of cantilever-type vibration energy harvesters based on piezoceramic films[J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-9. doi:10.1109/tim.2020.3026462 |
6 | HASEGAWA K, UENO T, KIWATA T .Proposal of wind vibrational power generator using magnetostrictive material[J].IEEE Transactions on Magnetics,2019,55(7):1-4. doi:10.1109/tmag.2019.2904538 |
7 | 高爽 .悬臂式Fe-Ga合金振动发电系统特性研究[D].沈阳:沈阳工业大学,2019. |
GAO S .Research on characteristics of cantilever Fe-Ga alloy vibration power generation system[D].Shenyang:Shenyang University of Technology,2019. | |
8 | KITTIPAISALSILPA K, KATO T, SUZUKI Y .Liquid-crystal-enhanced electrostatic vibration generator[C]//2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).Shanghai,China:IEEE,2016:37-40. doi:10.1109/memsys.2016.7421551 |
9 | HONMA H, TOSHIYOSHI H .A double-deck structured MEMS electrostatic vibrational energy harvester for minimal footprint[C]//2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS).Seoul,South Korea:IEEE,2019:1017-1020. doi:10.1109/memsys.2019.8870642 |
10 | JIANG D, LIU G, LI W,et al .A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting[J].IEEE Transactions on Power Electronics,2019,35(1):25-32. doi:10.1109/tpel.2019.2921152 |
11 | FAN K, LIU J, WEI D,et al .A cantilever-plucked and vibration-driven rotational energy harvester with high electric outputs[J].Energy Conversion and Management,2021,244:114504. doi:10.1016/j.enconman.2021.114504 |
12 | ZHANG Y, LUO A, WANG Y,et al .Rotational electromagnetic energy harvester for human motion application at low frequency[J].Applied Physics Letters,2020,116(5):053902. doi:10.1063/1.5142575 |
13 | WANG Y, WANG P, LI S,et al .An electro-magnetic vibration energy harvester using a magnet-array-based vibration-to-rotation conversion mechanism[J].Energy Conversion and Management,2022,253:115146. doi:10.1016/j.enconman.2021.115146 |
14 | FOONG F M, THEIN C K, YURCHENKO D .Structural optimisation through material selections for multi-cantilevered vibration electromagnetic energy harvesters[J].Mechanical Systems and Signal Processing,2022,162:108044. doi:10.1016/j.ymssp.2021.108044 |
15 | THEIN C K, FOONG F M, SHU Y C .Damping ratio and power output prediction of an electromagnetic energy harvester designed through finite element analysis[J].Sensors and Actuators A:Physical,2019,286:220-231. doi:10.1016/j.sna.2018.12.041 |
16 | QIU J, LIU X, CHEN H,et al .A low-frequency resonant electromagnetic vibration energy harvester employing the Halbach arrays for intelligent wireless sensor networks[J].IEEE Transactions on Magnetics,2015,51(11):1-4. doi:10.1109/tmag.2015.2455041 |
17 | NEZAMI S, LEE S, JIN J,et al .Shape optimization of railroad vibration energy harvester for structural robustness and power generation performance[J].Engineering Structures,2018,173:460-471. doi:10.1016/j.engstruct.2018.07.011 |
18 | NGUYEN H T, GENOV D A, BARDAWEEL H .Vibration energy harvesting using magnetic spring based nonlinear oscillators:design strategies and insights[J].Applied Energy,2020,269:115102. doi:10.1016/j.apenergy.2020.115102 |
19 | HE W, QU C .A magnetically levitated magneto-electric vibration generator using a Halbach array[J].Sensors and Actuators A:Physical,2020,315:112301. doi:10.1016/j.sna.2020.112301 |
20 | YANG X, LAI S K, WANG C,et al .On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations[J].Ener-gy,2022:124028. doi:10.1016/j.energy.2022.124028 |
21 | 张博,杨永宝,冯智,等 .一种汲取振动能量的圆筒型直线发电机:ZL202122032818.X[P].2022-02-01. doi:10.1109/ldia49489.2021.9505940 |
ZHANG B, YANG Y B, FENG Z,et al .A cylindrical linear generator that absorbs vibration energy:ZL202122032818.X[P].2022-02-01. doi:10.1109/ldia49489.2021.9505940 |
[1] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[2] | Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit [J]. Power Generation Technology, 2024, 45(3): 401-411. |
[3] | Bin ZHAO, Gao LIANG, Menghao JIANG, Gang ZOU, Li WANG. Grid-Connected Power Fluctuation Suppression and Energy Storage Optimization Configuration of Photovoltaic-Energy Storage System [J]. Power Generation Technology, 2024, 45(3): 423-433. |
[4] | Junhui LI, Guohang CHEN, Teng MA, Cuiping LI, Xingxu ZHU, Chen JIA. Optimal Control Strategy of Peak Shaving of Flow Battery Energy Storage System Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(3): 434-447. |
[5] | Jianqiang YE, Dunhu SUN. Research on Power Planning Based on Robust Optimization Under Carbon Trading Condition [J]. Power Generation Technology, 2024, 45(3): 566-574. |
[6] | Zhonghao QIAN, Jun HU, Sichen SHEN, Ting QIN, Hanyi MA, Xiaodong WANG, Caoyi FENG, Zhinong WEI. Multi-Power Coordinated Optimization Operation Strategy Considering Conditional Value at Risk [J]. Power Generation Technology, 2023, 44(6): 781-789. |
[7] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[8] | Zhongrong LIANG, Maowei LAN, Guo ZHENG, Rongqiang HE, Keyang QU, Yunhua GAN. Study on Multi-Objective Optimization of High-Efficiency and Low-NO x Emissions of Power Station Boilers Based on Least Squares Support Vector Machines [J]. Power Generation Technology, 2023, 44(6): 809-816. |
[9] | Xiaojie PAN, Youping XU, Zhijun XIE, Yukun WANG, Mujie ZHANG, Mengxuan SHI, Kun MA, Wei HU. Power System Transient Stability Preventive Control Optimization Method Driven by Stacking Ensemble Learning [J]. Power Generation Technology, 2023, 44(6): 865-874. |
[10] | Zhongliang GAO, Qi GENG, Zhe WANG, Ting GAO, Yingfeng LI, Lei CHEN, Meicheng LI. Structure Optimization and Experimental Study of PEDOT:PSS/Si Hybrid Solar Cells With SiNWs [J]. Power Generation Technology, 2023, 44(5): 685-695. |
[11] | Lixin HUO, Richeng WANG. Study on Steam Supply Scheme of Seawater Desalination System Under Low Load Condition of Dual-Purpose Power and Water Plant Units [J]. Power Generation Technology, 2023, 44(5): 722-730. |
[12] | Guoqin ZHAO, Maowei LAN, Yang LI, Yuanxiang ZHOU, Zhengwei JIANG, Yunhua GAN. Study on Optimization of Prediction Model of Flue Gas Oxygen Content in Thermal Power Plant Based on Least Squares Support Vector Machine [J]. Power Generation Technology, 2023, 44(4): 534-542. |
[13] | Jingcheng SU, Zhiqiang WANG, Jiangjiang QU, Kai ZHANG. Pressure Difference Prediction of Air Preheater in Coal-Fired Power Plant Based on BP Neural Network and Support Vector Regression [J]. Power Generation Technology, 2023, 44(4): 550-556. |
[14] | Chunhui LUO, Tonghua ZOU, QU Gangju, Tao TANG. A Planning Method for Anti-disaster Backbone Grid Considering Economy and Reliability [J]. Power Generation Technology, 2023, 44(3): 425-430. |
[15] | Siqin CHEN, Yinan ZHU, Xiaochen LI, Xuehai WANG. Research on Optimization Method of Coal Blending for Carbon Emission Reduction Based on Bi-level Programming [J]. Power Generation Technology, 2023, 44(2): 155-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||