Power Generation Technology ›› 2023, Vol. 44 ›› Issue (2): 235-243.DOI: 10.12096/j.2096-4528.pgt.21135
• New Energy • Previous Articles Next Articles
Jian YANG1, Yu LIU1, Kunpeng HUANG2, Yazhou LUO1, Siqing NIU1, Wei WANG1, Jiafei HUAN1, Lei ZHANG1, Pei ZHANG2, Huawei LI2
Received:
2022-04-07
Published:
2023-04-30
Online:
2023-04-28
Supported by:
CLC Number:
Jian YANG, Yu LIU, Kunpeng HUANG, Yazhou LUO, Siqing NIU, Wei WANG, Jiafei HUAN, Lei ZHANG, Pei ZHANG, Huawei LI. A Method for Estimating Available Power of Wind Farms by Considering the Power Generation Conditions and Station Losses[J]. Power Generation Technology, 2023, 44(2): 235-243.
估算时刻 | 历史时刻 | 相关系数 |
---|---|---|
t时刻 | t-5时刻 | 0.895 7 |
t-4时刻 | 0.912 9 | |
t-3时刻 | 0.945 1 | |
t-2时刻 | 0.966 8 | |
t-1时刻 | 0.975 7 |
Tab. 1 Correlation coefficient between cabin wind speed at estimated time and cabin wind speed at historical time
估算时刻 | 历史时刻 | 相关系数 |
---|---|---|
t时刻 | t-5时刻 | 0.895 7 |
t-4时刻 | 0.912 9 | |
t-3时刻 | 0.945 1 | |
t-2时刻 | 0.966 8 | |
t-1时刻 | 0.975 7 |
超参数 | 数值 |
---|---|
输入层时间步数 | 5 |
输入层维数 | 1 |
隐藏层的数目 | 1 |
隐藏层维数 | 8 |
输出变量维数 | 1 |
Tab.2 Hyperparameters of wind turbine theoretical generation power estimation model based on LSTM network
超参数 | 数值 |
---|---|
输入层时间步数 | 5 |
输入层维数 | 1 |
隐藏层的数目 | 1 |
隐藏层维数 | 8 |
输出变量维数 | 1 |
模型 | 均方根误差/% | 平均绝对误差/% |
---|---|---|
BP model-1 | 6.127 | 5.378 |
LSTM model-1 | 5.825 | 4.304 |
LSTM model-5 | 3.071 | 2.150 |
Tab. 3 Errors in the test set of the theoretical power generation estimation model for wind turbines
模型 | 均方根误差/% | 平均绝对误差/% |
---|---|---|
BP model-1 | 6.127 | 5.378 |
LSTM model-1 | 5.825 | 4.304 |
LSTM model-5 | 3.071 | 2.150 |
模型 | 均方根误差/% | 平均绝对误差/% |
---|---|---|
1 | 18.077 | 16.663 |
2 | 5.708 | 4.590 |
3 | 2.850 | 1.888 |
4 | 2.877 | 2.511 |
5 | 1.320 | 1.091 |
Tab. 4 Model errors of wind farm available generation power estimation model
模型 | 均方根误差/% | 平均绝对误差/% |
---|---|---|
1 | 18.077 | 16.663 |
2 | 5.708 | 4.590 |
3 | 2.850 | 1.888 |
4 | 2.877 | 2.511 |
5 | 1.320 | 1.091 |
1 | 邬嘉雨,刘洋,许立雄,等 .区块链技术下考虑风电不确定性的微网群鲁棒博弈交易模式[J].电力建设,2021,42(9):10-21. doi:10.12204/j.issn.1000-7229.2021.09.002 |
WU J Y, LIU Y, XU L X,et al .Robust game transaction model of multi-microgrid system applying blockchain technology considering wind power uncertainty[J].Electric Power Construction,2021,42(9):10-21. doi:10.12204/j.issn.1000-7229.2021.09.002 | |
2 | 黄树帮,陈耀,金宇清 .碳中和背景下多通道特征组合超短期风电功率预测[J].发电技术,2021,42(1):60-68. doi:10.12096/j.2096-4528.pgt.20103 |
HUANG S B, CHEN Y, JIN Y Q .A multi-channel feature combination model for ultra-short-term wind power prediction under carbon neutral background[J].Power Generation Technology,2021,42(1):60-68. doi:10.12096/j.2096-4528.pgt.20103 | |
3 | 刘栋,魏霞,王维庆,等 .基于SSA-ELM的短期风电功率预测[J].智慧电力,2021,49(6):53-59. doi:10.3969/j.issn.1673-7598.2021.06.009 |
LIU D, WEI X, WANG W Q,et al .Short-term wind power prediction based on SSA-ELM[J].Smart Power, 2021,49(6):53-59. doi:10.3969/j.issn.1673-7598.2021.06.009 | |
4 | 李卫东,贺鸿鹏 .考虑风电消纳的源-荷协同优化调度策略[J].发电技术,2020,41(2):126-130. doi:10.12096/j.2096-4528.pgt.18266 |
LI W D, HE H P .Source-load cooperative optimization dispatch strategy considering wind power accommodation[J].Power Generation Technology,2020,41(2):126-130. doi:10.12096/j.2096-4528.pgt.18266 | |
5 | 朱丹丹,赵静波,李强,等 .高载能负荷企业参与受阻风电消纳决策方法[J].电力工程技术,2021,40(2):121-127. doi:10.12158/j.2096-3203.2021.02.017 |
ZHU D D, ZHAO J B, LI Q,et al .Decision making method for energy-intensive enterprise in consuming curtailed wind power[J].Electric Power Engineering Technology,2021,40(2):121-127. doi:10.12158/j.2096-3203.2021.02.017 | |
6 | 姜楠,戴赛,许丹,等 .计及机组组合与线路重构协同的电热联合系统消纳弃风研究[J].电力系统保护与控制,2022,50(14):105-113. |
JIANG N, DAI S, XU D,et al .Wind power consumption in a CHP system considering the collaboration of unit combination and line reconstruction[J].Power System Protection and Control,2022,50(14):105-113. | |
7 | 杨梓萤,姚李孝 .梯级水库等效蓄能在风电消纳中的应用[J].电网与清洁能源,2021,37(6):134-138. doi:10.3969/j.issn.1674-3814.2021.06.017 |
YANG Z Y, YAO L X .Application of cascade reservoir equivalent energy storage in wind power accommodation[J].Power System and Clean Energy,2021,37(6):134-138. doi:10.3969/j.issn.1674-3814.2021.06.017 | |
8 | 国家电网有限公司 . 风电理论功率及受阻电量计算方法: [S].北京:中国电力出版社,2020. |
State Grid Corporation of China . Calculation method of wind power theoretical power and blocked power: [S].Beijing:China Electric Power Press,2020. | |
9 | 孙辉,徐箭,孙元章,等 .基于混合整数线性规划的风电场有功优化调度[J].电力系统自动化,2016,40(22):27-33. doi:10.7500/AEPS20151214007 |
SUN H, XU J, SUN Y Z,et al .Wind farm active power optimal dispatch based on mixed integer linear programming[J].Automation of Electric Power Systems, 2016, 40(22): 27-33. doi:10.7500/AEPS20151214007 | |
10 | 延平 .风电场运行效能评价方法研究[D].北京:华北电力大学,2017. |
YAN P .Research on wind farm operation effectiveness evaluation method[D].Beijing:North China Electric Power University,2017. | |
11 | 张华英. 风场特性机理分析及风电机组输出功率优化研究[D].北京:华北电力大学,2019. |
ZHANG H Y .Research on the mechanism analysis of wind field characteristics and the optimization of wind turbine output power[D].Beijing:North China Electric Power University, 2019. | |
12 | 潘凯 .含风电场电力系统协调优化调度及其评价[D].武汉:华中科技大学,2014. |
PAN K .Coordinated and optimized dispatch and evaluation of power system with wind farms[D].Wuhan:Huazhong University of Science and Technology,2014. | |
13 | 国家能源局 . 风电场理论发电量与弃风电量评估导则 [S].北京:中国电力出版社,2014. doi:10.3969/j.issn.1006-8910.2021.07.002 |
National Energy Administration . Guidelines for the evaluation of theoretical power generation and curtailment of wind farms [S].Beijing:China Electric Power Press,2014. doi:10.3969/j.issn.1006-8910.2021.07.002 | |
14 | 辛元庆,王国君,陈靖,等 .风电场无功损耗特性及其补偿裕度分析研究[J].青海电力,2020,39(1):18-23. |
XIN Y Q, WANG G J, CHEN J,et al .Research on the characteristics of reactive power loss and compensation margin of wind farms[J].Qinghai Electric Power,2020,39(1):18-23. | |
15 | 刘双,张建周,柏嵩 .计及机组运行工况的风电场有功功率控制策略[J].电气技术,2013(10):15-18. doi:10.3969/j.issn.1673-3800.2013.10.004 |
LIU S, ZHANG J Z, BAI S .Wind farm active power control strategy considering unit operating conditions[J].Electrical Technology,2013(10):15-18. doi:10.3969/j.issn.1673-3800.2013.10.004 | |
16 | 刘永前,邵振州,王铮,等 .基于分段支持向量机的风电机组理论功率计算研究[J].太阳能学报,2019,40(3):673-680. |
LIU Y Q, SHAO Z Z, WANG Z,et al .Research on theoretical power calculation of wind turbine based on segmented support vector machine[J].Acta Solar Energy,2019,40(3):673-680. | |
17 | 刘芳 .基于改进BP神经网络的风电功率预测方法研究[D].杭州:浙江大学,2020. |
LIU F .Research on wind power prediction method based on improved BP neural network[D].Hangzhou:Zhejiang University,2020. | |
18 | 刘军,汪继勇 .基于风电机组健康状态的风电场功率分配研究[J].电力系统保护与控制,2020,48(20):106-113. doi:10.19783/j.cnki.pspc.191489 |
LIU J, WANG J Y .Research on wind farm power distribution based on the health status of wind turbines[J].Power System Protection and Control,2020,48(20): 106-113. doi:10.19783/j.cnki.pspc.191489 | |
19 | GRANGER C, LIN J .Using the mutual information coefficient to identify lags in nonlinear models[J].Journal of Time Series Analysis,2008,15(4):371-384. |
[1] | Dan ZHOU, Zhi YUAN, Ji LI, Wei FAN. An Advanced Fuzzy Control Strategy for Hybrid Energy Storage Systems Considering Smoothing of Wind Power Fluctuations at Future Moments [J]. Power Generation Technology, 2024, 45(3): 412-422. |
[2] | Junhui LI, Guohang CHEN, Teng MA, Cuiping LI, Xingxu ZHU, Chen JIA. Optimal Control Strategy of Peak Shaving of Flow Battery Energy Storage System Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(3): 434-447. |
[3] | Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU. Energy Storage Configuration Considering the System Wind Power Reserve Capacity Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(2): 260-272. |
[4] | Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks [J]. Power Generation Technology, 2024, 45(2): 323-330. |
[5] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[6] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[7] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[8] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[9] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[10] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
[11] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[12] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[13] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[14] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
[15] | Hui ZHANG, Xiufang GU, Yanning CHEN, Zhenpeng LUO, Chen WANG. Benefit Cost Analysis of Thermal Storage Tank in Thermal Power Plant Considering Wind Power Consumption [J]. Power Generation Technology, 2022, 43(4): 664-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||