Power Generation Technology ›› 2023, Vol. 44 ›› Issue (2): 155-162.DOI: 10.12096/j.2096-4528.pgt.22012
• Power Generation and Environmental Protection • Previous Articles Next Articles
Siqin CHEN1, Yinan ZHU2, Xiaochen LI1, Xuehai WANG1
Received:
2022-05-20
Published:
2023-04-30
Online:
2023-04-28
Supported by:
CLC Number:
Siqin CHEN, Yinan ZHU, Xiaochen LI, Xuehai WANG. Research on Optimization Method of Coal Blending for Carbon Emission Reduction Based on Bi-level Programming[J]. Power Generation Technology, 2023, 44(2): 155-162.
编号 | Mar/% | Aar/% | Var/% | Sar/% | Q/(MJ⋅kg-1) | P/(元/t) |
---|---|---|---|---|---|---|
M1 | 1.14 | 30.58 | 11.05 | 0.4 | 20.69 | 638.29 |
M2 | 2.09 | 36.28 | 7.61 | 0.72 | 18.38 | 487.47 |
M3 | 1.82 | 33.24 | 22.83 | 3.66 | 16.78 | 405.54 |
M4 | 2.39 | 29.52 | 6.25 | 0.42 | 21.04 | 494.00 |
M5 | 0.76 | 24.71 | 12.72 | 0.35 | 23.09 | 624.00 |
M6 | 0.51 | 32.27 | 14.96 | 2.99 | 20.28 | 515.14 |
M7 | 1.72 | 38.88 | 7.83 | 0.57 | 18.50 | 506.00 |
M8 | 0.94 | 28.98 | 12.23 | 1.24 | 21.29 | 734.08 |
M9 | 2.07 | 47.23 | 9.98 | 1.14 | 15.16 | 409.86 |
M10 | 3.23 | 33.49 | 9.04 | 1.91 | 18.45 | 519.53 |
Tab. 1 Single coal database
编号 | Mar/% | Aar/% | Var/% | Sar/% | Q/(MJ⋅kg-1) | P/(元/t) |
---|---|---|---|---|---|---|
M1 | 1.14 | 30.58 | 11.05 | 0.4 | 20.69 | 638.29 |
M2 | 2.09 | 36.28 | 7.61 | 0.72 | 18.38 | 487.47 |
M3 | 1.82 | 33.24 | 22.83 | 3.66 | 16.78 | 405.54 |
M4 | 2.39 | 29.52 | 6.25 | 0.42 | 21.04 | 494.00 |
M5 | 0.76 | 24.71 | 12.72 | 0.35 | 23.09 | 624.00 |
M6 | 0.51 | 32.27 | 14.96 | 2.99 | 20.28 | 515.14 |
M7 | 1.72 | 38.88 | 7.83 | 0.57 | 18.50 | 506.00 |
M8 | 0.94 | 28.98 | 12.23 | 1.24 | 21.29 | 734.08 |
M9 | 2.07 | 47.23 | 9.98 | 1.14 | 15.16 | 409.86 |
M10 | 3.23 | 33.49 | 9.04 | 1.91 | 18.45 | 519.53 |
煤质特性 | Mar/% | Aar/% | Var/% | Sar/% | Q/(MJ⋅kg-1) |
---|---|---|---|---|---|
设计值 | 1.42 | 26.4 | 17.1 | 0.8 | 21.35 |
Tab. 2 Boiler design coal parameter value
煤质特性 | Mar/% | Aar/% | Var/% | Sar/% | Q/(MJ⋅kg-1) |
---|---|---|---|---|---|
设计值 | 1.42 | 26.4 | 17.1 | 0.8 | 21.35 |
参数 | 碳排放配额/[t/(MW⋅h)] | 减排成本/元 | 碳排放成本/元 | 综合成本/元 |
---|---|---|---|---|
数值 | 0.79 | 7 941.79 | 612 | 1 048.3 |
Tab.3 Related results of generator set under optimal coal blending ratio
参数 | 碳排放配额/[t/(MW⋅h)] | 减排成本/元 | 碳排放成本/元 | 综合成本/元 |
---|---|---|---|---|
数值 | 0.79 | 7 941.79 | 612 | 1 048.3 |
1 | 刘志强,潘荔,赵毅,等 .“十四五”时期我国火电行业节能潜力分析与建议[J].中国能源,2021,43(4):12-18. |
LIU Z Q, PAN L, ZHAO Y,et al .Analysis and suggestions on energy saving potential of thermal power industry in China during the 14th Five-Year Plan period [J].China Energy,2021,43(4):12-18. | |
2 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):10-18. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis on the trend of power generation technology in the 14th Five-Year Plan period under the background of carbon peak and carbon neutralization[J].Power Generation Technology,2022,43(1):10-18. doi:10.12096/j.2096-4528.pgt.21030 | |
3 | 王彤 .我国煤电发展现状及“十四五”时期发展方向[J].应用能源技术,2020(7):20-23. doi:10.3969/j.issn.1009-3230.2020.07.005 |
WANG T .Development status and development direction of coal power in China during the 14th Five-Year Plan period[J].Applied Energy Technology,2020(7):20-23. doi:10.3969/j.issn.1009-3230.2020.07.005 | |
4 | 张金良,贾凡 .中国火电行业多模型碳达峰情景预测[J].电力建设,2022,43(5):18-28. doi:10.12204/j.issn.1000-7229.2022.05.003 |
ZHANG J L, JIA F .Multi-model carbon peak scenario prediction for thermal power industry in China[J].Electric Power Construction,2022,43(5):18-28. doi:10.12204/j.issn.1000-7229.2022.05.003 | |
5 | 童光毅 .基于双碳目标的智慧能源体系构建[J].智慧电力,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 |
TONG G Y .Construction of smart energy system based on dual carbon goal[J].Smart Power,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 | |
6 | WU M, NAKANO M, SHE J H .A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant[J].Expert Systems with Applications,1999,16(3):271-281. doi:10.1016/s0957-4174(98)00076-1 |
7 | 黄海东,刘福国,国钦光,等 .配煤掺烧最小煤质偏差模型及煤场存放优化[J].热能动力工程,2020,35(5):97-104. |
HUANG H D, LIU F G, GUO Q G,et al .Minimum deviation model of coal quality and storage optimization of coal yard for blending and firing[J].Thermal Energy and Power Engineering,2020,35(5):97-104. | |
8 | 夏季,陆攀,华志刚,等 .电站锅炉全局优化智能配煤模型的建立及系统开发[J].动力工程学报,2010,30(7):512-517. |
XIA J, LU P, HUA Z G,et al .Establishment and system development of intelligent coal blending model for global optimization of utility boilers[J].Chinese Journal of Power Engineering,2010,30(7):512-517. | |
9 | SHIH J S, FREY H C .Coal blending optimization under uncertainty[J].European Journal of Operational Research,1995,83(3):452-465. doi:10.1016/0377-2217(94)00243-6 |
10 | 王英敏,张志刚,张文君,等 .火电机组混煤掺烧与优化系统研究与应用[J].科学技术与工程,2020,20(14):5634-5638. doi:10.3969/j.issn.1671-1815.2020.14.026 |
WANG Y M, ZHANG Z G, ZHANG W J,et al .Research and application of coal blending and optimization system for thermal power units[J].Science Technology and Engineering,2020,20(14):5634-5638. doi:10.3969/j.issn.1671-1815.2020.14.026 | |
11 | 张宇,周连升,王桂林,等 .减少污染物排放成本的配煤优化模型[J].热力发电,2015,44(7):88-92. doi:10.3969/j.issn.1002-3364.2015.07.088 |
ZHANG Y, ZHOU L S, WANG G L,et al .Optimization model of coal blending to reduce pollutant emission cost[J].Thermal Power,2015,44(7):88-92. doi:10.3969/j.issn.1002-3364.2015.07.088 | |
12 | LÜ C W, XU J P, XIE H P,et al .Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions[J].Applied Energy,2016,183:1035-1052. |
13 | 段翩,朱建全,刘明波 .基于双层模糊机会约束规划的虚拟电厂优化调度[J].电工技术学报,2016,31(9):58-67. doi:10.3969/j.issn.1000-6753.2016.09.008 |
DUAN P, ZHU J Q, LIU M B .Optimal scheduling of virtual power plants based on double-layer fuzzy opportunistic constrained programming[J].Journal of Electrotechnical Technology,2016,31(9):58-67. doi:10.3969/j.issn.1000-6753.2016.09.008 | |
14 | 叶泽,何姣,周鑫,等 .发电行业碳排放权初始配额分配的双层规划模型[J].系统工程,2018,36(11):140-146. |
YE Z, HE J, ZHOU X, et al. A two-layer planning model for the initial allocation of carbon emission rights in the power generation industry[J]. Systems Engineering, 2018, 36(11):140-146. | |
15 | 刘福国,刘科,王守恩 .基于机会约束的电厂混煤煤质和成本的Pareto前沿[J].发电技术,2022,43(1):160-167. doi:10.12096/j.2096-4528.pgt.21042 |
LIU F G, LIU K, WANG S E .The Pareto frontier of coal quality and cost of power plant blending based on opportunity constraints[J].Power Generation Technology,2022,43(1):160-167. doi:10.12096/j.2096-4528.pgt.21042 | |
16 | 高鹰,谢胜利 .混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. doi:10.3969/j.issn.1002-137X.2004.08.004 |
GAO Y, XIE S L .Chaos particle swarm optimization algorithm[J].Computer Science,2004,31(8):13-15. doi:10.3969/j.issn.1002-137X.2004.08.004 | |
17 | 付轩熠,茅大钧,印琪民 .基于多种算法的火电厂配煤优化方法研究[J].煤炭工程,2018,50(9):150-154. doi:10.11799/ce201809038 |
FU X Y, MAO D J, YIN Q M .Research on coal blending optimization method for thermal power plants based on multiple algorithms[J].Coal Engineering,2018,50(9):150-154. doi:10.11799/ce201809038 | |
18 | 刘艳军 .电厂动力配煤煤质预测模型与优化模型研究[D].长沙:中南大学,2011. |
LIU Y J .Research on coal quality prediction model and optimization model of power coal blending in power plants[D].Changsha:Central South University,2011. | |
19 | 国家发展和改革委员会应对气候变化司 .2015年中国区域电网基准线排放因子[R].北京:国家发展和改革委员会,2015. |
Department of Climate Change,National Development and Reform Commission .2015 China regional power grid baseline emission factor[R].Beijing:National Development and Reform Commission,2015. |
[1] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[2] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[3] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[4] | Jingji ZHU, Yishu XU, Jingying XU, Huakun WANG, Xiaowei LIU, Dunxi YU, Jingjing MA, Minghou XU. Effect of Co-firing Ammonia on Coal Volatile Flame Characteristics and Particulate Matter Formation Behaviours [J]. Power Generation Technology, 2022, 43(6): 908-917. |
[5] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
[6] | Jiangang HAO, Wenming GONG, Yang DING, Danwei ZHENG, Yong LIU. Analysis on Combustion Instability Characteristics of Model Swirl Combustor With Gas Fuel [J]. Power Generation Technology, 2022, 43(6): 927-934. |
[7] | Zhenshan LI, Hu CHEN, Weicheng LI, Lei LIU, Ningsheng CAI. Research Status and Prospect of Chemical Looping Combustion Pilot Systems [J]. Power Generation Technology, 2022, 43(4): 544-561. |
[8] | Zhenwu MIAO, Laihong SHEN, Haibo ZHAO. Study on Cycling Reaction Performance of Composite Hematite and Copper Ore Oxygen Carrier in Chemical Looping Combustion [J]. Power Generation Technology, 2022, 43(4): 574-583. |
[9] | Hu GAO, Fan LIU, Hai LI. Opportunities, Challenges and Application Prospects of Ammonia Fuel Under the Target of Carbon Neutrality [J]. Power Generation Technology, 2022, 43(3): 462-467. |
[10] | Yuan LI, Zhicheng GUO, Xiaochao MENG, Kefeng CHEN, Liming REN, Rui MAO, Kefa CEN. Design of an Online Monitoring System for Combustion Field Parameter in a Furnace Based on Tunable Diode Laser Absorption Spectroscopy Technology [J]. Power Generation Technology, 2022, 43(2): 353-361. |
[11] | Fuguo LIU, Ke LIU, Shouen WANG. Pareto Fronts of Mixed Coal Quality and Cost in Power Plant Based on Chance Constraints [J]. Power Generation Technology, 2022, 43(1): 160-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||