Power Generation Technology ›› 2022, Vol. 43 ›› Issue (6): 970-976.DOI: 10.12096/j.2096-4528.pgt.22080
• Power Generation and Environmental Protection • Previous Articles
Zhiyun WANG1, Yuzhu ZHAO2, Xuedong WANG2, Yuanshu ZHANG2
Received:
2022-04-20
Published:
2022-12-31
Online:
2023-01-03
CLC Number:
Zhiyun WANG, Yuzhu ZHAO, Xuedong WANG, Yuanshu ZHANG. Experimental Study on Regulation Characteristics of Intermediate Pressure Cylinder Regulating Valves of Heat Supply Steam Turbine Under Peak Regulating Mechanism[J]. Power Generation Technology, 2022, 43(6): 970-976.
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
主蒸汽压力/MPa | 16.67 | 主蒸汽温度/℃ | 538 |
主蒸汽流量/(t/h) | 1 021 | 再热蒸汽压力/MPa | 3.34 |
再热蒸汽温度/℃ | 538 | 再热蒸汽流量/(t/h) | 836/839(供热) |
额定给水温度/℃ | 274.30 | 回热抽汽级数 | 3高+4低+1除氧 |
额定背压/kPa | 4.90 | 冷却水温度/℃ | 20 |
低压末级叶片高度/mm | 905 | 保证热耗率/[kJ/(kW·h)] | 7 983.20 |
采暖抽汽温度/℃ | 267.50 | 采暖抽汽压力/MPa | 0.50 |
额定功率/MW | 312/305(供热) | 额定采暖抽汽量/(t/h) | 160 |
Tab. 1 Technical parameters of steam turbine
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
主蒸汽压力/MPa | 16.67 | 主蒸汽温度/℃ | 538 |
主蒸汽流量/(t/h) | 1 021 | 再热蒸汽压力/MPa | 3.34 |
再热蒸汽温度/℃ | 538 | 再热蒸汽流量/(t/h) | 836/839(供热) |
额定给水温度/℃ | 274.30 | 回热抽汽级数 | 3高+4低+1除氧 |
额定背压/kPa | 4.90 | 冷却水温度/℃ | 20 |
低压末级叶片高度/mm | 905 | 保证热耗率/[kJ/(kW·h)] | 7 983.20 |
采暖抽汽温度/℃ | 267.50 | 采暖抽汽压力/MPa | 0.50 |
额定功率/MW | 312/305(供热) | 额定采暖抽汽量/(t/h) | 160 |
参数 | 工况1 | 工况2 | 工况3 | 工况4 | 工况5 | 参数 | 工况1 | 工况2 | 工况3 | 工况4 | 工况5 |
---|---|---|---|---|---|---|---|---|---|---|---|
中压调门开度/% | 99.01 | 48.95 | 35.33 | 30.54 | 24.97 | 中压缸排汽焓/(kJ/kg) | 3 023.47 | 3 023.51 | 3 026.12 | 3 027.83 | 3 034.82 |
发电机有功功率/MW | 249.43 | 249.59 | 247.31 | 245.69 | 239.64 | 中压缸蒸汽焓降/(kJ/kg) | 496.56 | 495.6 | 499.08 | 498.44 | 503.28 |
主汽流量/(t/h) | 782.21 | 779.33 | 779.01 | 779.35 | 779.04 | 中压缸效率/% | 93.37 | 92.65 | 91.36 | 89.34 | 84.78 |
主蒸汽压力/MPa | 16.78 | 16.69 | 16.74 | 16.79 | 16.75 | 再热抽汽母管压力/MPa | 2.27 | 2.40 | 2.49 | 2.64 | 3.13 |
主蒸汽温度/℃ | 533.48 | 533.10 | 535.81 | 532.85 | 531.76 | 再热抽汽母管温度/℃ | 522.52 | 523.13 | 525.82 | 527.37 | 534.16 |
主蒸汽焓/(kJ/kg) | 3 382.62 | 3 382.60 | 3 389.72 | 3 380.71 | 3 378.08 | 再热抽汽母管流量/(t/h) | 53.94 | 52.25 | 53.14 | 53.53 | 52.20 |
高压缸排汽压力/MPa | 3.02 | 3.07 | 3.15 | 3.27 | 3.65 | 减温减压器出口供汽压力/MPa | 1.11 | 1.10 | 1.10 | 1.10 | 1.10 |
高压缸排汽温度/℃ | 312.97 | 314.32 | 317.60 | 320.29 | 331.76 | 减温减压器出口供汽温度/℃ | 281.22 | 279.40 | 279.64 | 282.80 | 282.61 |
高压缸排汽焓/(kJ/kg) | 3 024.34 | 3 026.22 | 3 032.09 | 3 035.46 | 3054.10 | 减温减压器出口供汽流量/(t/h) | 57.67 | 56.07 | 57.17 | 58.08 | 56.65 |
高压缸蒸汽焓降/(kJ/kg) | 358.28 | 356.38 | 357.63 | 345.25 | 323.98 | 小汽机低压调门开度/% | 50.61 | 49.98 | 50.47 | 50.97 | 50.95 |
高压缸效率/% | 76.02 | 76.31 | 77.00 | 76.06 | 75.80 | 四抽至小汽机进汽压力/MPa | 0.74 | 0.74 | 0.736 0 | 0.73 | 0.73 |
高排缸压比 | 3.13 | 3.10 | 3.01 | 2.93 | 2.65 | 四抽至小汽机进汽温度/℃ | 350.77 | 350.98 | 352.05 | 353.28 | 356.54 |
再热器压损/% | 8.99 | 8.68 | 8.12 | 7.37 | 5.59 | 四抽至小汽机进汽流量/(t/h) | 35.61 | 35.24 | 35.35 | 35.62 | 35.30 |
中压缸进汽流量/(t/h) | 615.20 | 613.72 | 611.61 | 608.70 | 602.76 | 调节级压力/MPa | 9.470 | 9.511 | 9.487 | 9.565 | 9.671 |
中压缸进汽压力/MPa | 2.75 | 2.80 | 2.89 | 3.03 | 3.44 | 一抽压力/MPa | 5.23 | 5.26 | 5.30 | 5.39 | 5.63 |
中压缸进汽温度/℃ | 528.00 | 527.81 | 530.94 | 532.04 | 539.10 | 三抽压力/MPa | 1.47 | 1.48 | 1.47 | 1.47 | 1.45 |
中压缸进汽焓/(kJ/kg) | 3 520.03 | 3 519.11 | 3 525.20 | 3 526.27 | 3 538.10 | 四抽压力/MPa | 0.75 | 0.75 | 0.75 | 0.74 | 0.74 |
中压缸排汽压力/MPa | 0.47 | 0.47 | 0.47 | 0.47 | 0.46 | 凝汽器压力/kPa | 5.90 | 5.93 | 5.90 | 5.87 | 5.86 |
中压缸排汽温度/℃ | 280.20 | 280.22 | 281.48 | 282.31 | 285.56 |
Tab. 2 Thermal performance test results under 250 MW condition
参数 | 工况1 | 工况2 | 工况3 | 工况4 | 工况5 | 参数 | 工况1 | 工况2 | 工况3 | 工况4 | 工况5 |
---|---|---|---|---|---|---|---|---|---|---|---|
中压调门开度/% | 99.01 | 48.95 | 35.33 | 30.54 | 24.97 | 中压缸排汽焓/(kJ/kg) | 3 023.47 | 3 023.51 | 3 026.12 | 3 027.83 | 3 034.82 |
发电机有功功率/MW | 249.43 | 249.59 | 247.31 | 245.69 | 239.64 | 中压缸蒸汽焓降/(kJ/kg) | 496.56 | 495.6 | 499.08 | 498.44 | 503.28 |
主汽流量/(t/h) | 782.21 | 779.33 | 779.01 | 779.35 | 779.04 | 中压缸效率/% | 93.37 | 92.65 | 91.36 | 89.34 | 84.78 |
主蒸汽压力/MPa | 16.78 | 16.69 | 16.74 | 16.79 | 16.75 | 再热抽汽母管压力/MPa | 2.27 | 2.40 | 2.49 | 2.64 | 3.13 |
主蒸汽温度/℃ | 533.48 | 533.10 | 535.81 | 532.85 | 531.76 | 再热抽汽母管温度/℃ | 522.52 | 523.13 | 525.82 | 527.37 | 534.16 |
主蒸汽焓/(kJ/kg) | 3 382.62 | 3 382.60 | 3 389.72 | 3 380.71 | 3 378.08 | 再热抽汽母管流量/(t/h) | 53.94 | 52.25 | 53.14 | 53.53 | 52.20 |
高压缸排汽压力/MPa | 3.02 | 3.07 | 3.15 | 3.27 | 3.65 | 减温减压器出口供汽压力/MPa | 1.11 | 1.10 | 1.10 | 1.10 | 1.10 |
高压缸排汽温度/℃ | 312.97 | 314.32 | 317.60 | 320.29 | 331.76 | 减温减压器出口供汽温度/℃ | 281.22 | 279.40 | 279.64 | 282.80 | 282.61 |
高压缸排汽焓/(kJ/kg) | 3 024.34 | 3 026.22 | 3 032.09 | 3 035.46 | 3054.10 | 减温减压器出口供汽流量/(t/h) | 57.67 | 56.07 | 57.17 | 58.08 | 56.65 |
高压缸蒸汽焓降/(kJ/kg) | 358.28 | 356.38 | 357.63 | 345.25 | 323.98 | 小汽机低压调门开度/% | 50.61 | 49.98 | 50.47 | 50.97 | 50.95 |
高压缸效率/% | 76.02 | 76.31 | 77.00 | 76.06 | 75.80 | 四抽至小汽机进汽压力/MPa | 0.74 | 0.74 | 0.736 0 | 0.73 | 0.73 |
高排缸压比 | 3.13 | 3.10 | 3.01 | 2.93 | 2.65 | 四抽至小汽机进汽温度/℃ | 350.77 | 350.98 | 352.05 | 353.28 | 356.54 |
再热器压损/% | 8.99 | 8.68 | 8.12 | 7.37 | 5.59 | 四抽至小汽机进汽流量/(t/h) | 35.61 | 35.24 | 35.35 | 35.62 | 35.30 |
中压缸进汽流量/(t/h) | 615.20 | 613.72 | 611.61 | 608.70 | 602.76 | 调节级压力/MPa | 9.470 | 9.511 | 9.487 | 9.565 | 9.671 |
中压缸进汽压力/MPa | 2.75 | 2.80 | 2.89 | 3.03 | 3.44 | 一抽压力/MPa | 5.23 | 5.26 | 5.30 | 5.39 | 5.63 |
中压缸进汽温度/℃ | 528.00 | 527.81 | 530.94 | 532.04 | 539.10 | 三抽压力/MPa | 1.47 | 1.48 | 1.47 | 1.47 | 1.45 |
中压缸进汽焓/(kJ/kg) | 3 520.03 | 3 519.11 | 3 525.20 | 3 526.27 | 3 538.10 | 四抽压力/MPa | 0.75 | 0.75 | 0.75 | 0.74 | 0.74 |
中压缸排汽压力/MPa | 0.47 | 0.47 | 0.47 | 0.47 | 0.46 | 凝汽器压力/kPa | 5.90 | 5.93 | 5.90 | 5.87 | 5.86 |
中压缸排汽温度/℃ | 280.20 | 280.22 | 281.48 | 282.31 | 285.56 |
测点 | 测试数据 | DCS显示振幅/μm | ||
---|---|---|---|---|
通频振幅/μm | 一倍频振幅/μm | 一倍频相位/(°) | ||
1X | 95 | 75 | 39 | 96 |
1Y | 49 | 33 | 92 | 51 |
2X | 121 | 118 | 236 | 122 |
2Y | 79 | 73 | 326 | 80 |
3X | 37 | 32 | 215 | 37 |
3Y | 45 | 40 | 304 | 44 |
4X | 26 | 12 | 20 | 24 |
4Y | 38 | 21 | 200 | 36 |
5X | 79 | 68 | 218 | 77 |
5Y | 43 | 32 | 321 | 41 |
6X | 70 | 56 | 283 | 71 |
6Y | 70 | 50 | 14 | 69 |
7X | 26 | 11 | 138 | 27 |
7Y | 9 | 5 | 181 | 10 |
Tab. 3 Vibration data of each bearing under 250 MW condition
测点 | 测试数据 | DCS显示振幅/μm | ||
---|---|---|---|---|
通频振幅/μm | 一倍频振幅/μm | 一倍频相位/(°) | ||
1X | 95 | 75 | 39 | 96 |
1Y | 49 | 33 | 92 | 51 |
2X | 121 | 118 | 236 | 122 |
2Y | 79 | 73 | 326 | 80 |
3X | 37 | 32 | 215 | 37 |
3Y | 45 | 40 | 304 | 44 |
4X | 26 | 12 | 20 | 24 |
4Y | 38 | 21 | 200 | 36 |
5X | 79 | 68 | 218 | 77 |
5Y | 43 | 32 | 321 | 41 |
6X | 70 | 56 | 283 | 71 |
6Y | 70 | 50 | 14 | 69 |
7X | 26 | 11 | 138 | 27 |
7Y | 9 | 5 | 181 | 10 |
1 | 石永晖,马庆中,曹蓉秀,等 .大容量火电机组高效供热技术及适应性研究[J].热电技术,2019,3:8-13. |
SHI Y H, MA Q Z, CAO R X,et al .Study on high efficiency heating technology and adaptability of large capacity thermal power unit[J].Thermoelectric Technology,2019,3:8-13. | |
2 | 韩中合,肖炜刚,安国银 .大型汽轮机供热改造方案研究[J].汽轮机技术,2016,58(3):198-200. doi:10.3969/j.issn.1001-5884.2016.03.011 |
HAN Z H, XIAO W G, AN G Y .Research of heating retrofitting schemes for large steam turbine[J].Turbine Technology,2016,58(3):198-200. doi:10.3969/j.issn.1001-5884.2016.03.011 | |
3 | 郭容赫,王丽萍,潘云亮,等 .200 MW纯凝机组低压转子光轴改造供热研究应用[J].资源节约与环保,2019,4:3-5. |
GUO Y H, WANG L P, PAN Y L,et al .Research and application of heat supply reform of low-pressure rotor optical shaft of 200 MW pure condensing unit[J].Resource Conservation and Environment Protection,2019,4:3-5. | |
4 | 张猛,刘鑫屏 .350 MW供热机组低压缸切除改造灵活性提升分析[J].华北电力大学学报,2019,46(3):73-79. doi:10.3969/j.ISSN.1007-2691.2019.03.10 |
ZHANG M, LIU X P .Flexibility improvement in heating units through low-pressure cylinder excision of 350 MW heating unit[J].Journal of North China Electric Power University,2019,46(3):73-79. doi:10.3969/j.ISSN.1007-2691.2019.03.10 | |
5 | 刘勇,刘涛,李鹏 .330 MW东方汽轮机低压缸零出力改造案例研究[J].机电工程技术,2019,48(9):237-242. |
LIU Y, LIU T, LI P .Case analysis of low pressure cylinder zero output retrofit of 300 MW oriental steam turbine[J].Mechanical & Electrical Engineering Technology,2019,48(9):237-242. | |
6 | 王力,包伟伟,张敏,等 .350MW超临界机组切缸技术供热特性分析[J].浙江电力,2019,38(4):51-55. |
WANG L, BAO W W, ZHANG M,et al .Analysis on heating characteristics of cylinder transfer of 350 MW supercritical unit[J]. Zhejiang Electric Power,2019,38(4):51-55. | |
7 | 鄂志君,张利,杨帮宇,等 .低压缸零出力实现热电联产机组热电解耦与节能的理论研究[J].汽轮机技术,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 |
E Z J, ZHANG L, YANG B Y, et al .Theoretical study on heat-electricity decoupling and energy saving of LP cylinder zero output renovation of heat and power cogeneration units[J].Turbine Technology,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 | |
8 | 王学栋,王德华,郑威,等 .150 MW机组高背压供热改造的试验研究与分析[J].汽轮机技术,2012,54(5):397-400. |
WANG X D, WANG D H, ZHENG W,et al .Experimental investigation and analysis on reconstruction of high back pressure circulating water heat supply of 150 MW unit[J].Turbine Technology,2012,54(5):397-400. | |
9 | 李奕 .2×300 MW 汽轮机双机循环水余热供热系统[J].发电技术,2018,39(3):244-248. doi:10.12096/j.2096-4528.pgt.2018.037 |
LI Y .Heat supply system of 2×300 MW units’ circulating water waste heat[J].Power Generation Technology,2018,39(3):244-248. doi:10.12096/j.2096-4528.pgt.2018.037 | |
10 | 唐江,王学栋,赵玉柱,等 .凝汽机组高背压供热改造后的性能指标与调峰能力分析[J].发电技术,2018,39(5):455-461. doi:10.12096/j.2096-4528.pgt.2018.070 |
TANG J, WANG X D, ZHAO Y Z,et al .Analysis of performance indicators and peak regulation capacity of condensing unit after high back pressure retrofit for heating[J].Power Generation Technology,2018,39(5):455-461. doi:10.12096/j.2096-4528.pgt.2018.070 | |
11 | 刘光耀,王学栋,宋昂,等 .135 MW等级汽轮机不同高背压供热改造技术分析[J].发电与空调,2017,38(5):45-50. |
LIU G Y, WANG X D, SONG A,et al .Analysis of different reconstruction technology for heating supply with high back pressure of 135 MW grade steam turbine[J].Power Generation & Air Condition,2017,38(5):45-50. | |
12 | 徐则林,姜燕妮,徐磊,等 .热电联产机组热能深度梯级利用的研究[J].华北电力大学学报,2014,41(5):107-112. doi:10.3969/j.ISSN.1007-2691.2014.05.18 |
XU Z L, JIANG Y N, XU L,et al .Research on thermal energy step utilization in cogeneration units[J].Journal of North China Electric Power University,2014,41(5):107-112. doi:10.3969/j.ISSN.1007-2691.2014.05.18 | |
13 | 孙嘉权,许涛,商永强 .汽轮机组供热改造方案研究[J].华电技术,2018,40(1):68-70. doi:10.3969/j.issn.1674-1951.2018.01.023 |
SUN J Q, XU T, SHANG Y Q .Study on heating reform of steam turbine unit[J].Huadian Technology,2018,40(1):68-70. doi:10.3969/j.issn.1674-1951.2018.01.023 | |
14 | 薛朝囡,杨荣祖,王汀,等 .汽轮机高低旁路联合供热在超临界350 MW机组上的应用[J].热力发电,2018,47(5):101-105. doi:10.19666/j.rlfd.201801029 |
XUE Z N, YANG R Z, WANG T,et al .Application of turbine HP-LP bypass system combining with heating in supercritical 350 MW unit[J].Thermal Power Generation,2018,47(5):101-105. doi:10.19666/j.rlfd.201801029 | |
15 | 李海龙,王晋权,马晓峰 .超临界600 MW汽轮机组调门流量特性调整及运行优化[J].黑龙江电力,2011,33(4):280-283. doi:10.3969/j.issn.1002-1663.2011.04.012 |
LI H L, WANG J Q, MA X F .Adjustment of control valve’s flow characteristics and operation optimization for supercritical 600 MW turbine units[J].Heilongjiang Electric Power,2011,33(4):280-283. doi:10.3969/j.issn.1002-1663.2011.04.012 | |
16 | 陈文,蔡文,万忠海 .国产引进型340 MW汽轮机组流量特性试验研究[J].江西电力,2019,43(2):49-51. doi:10.3969/j.issn.1006-348X.2019.02.013 |
CHEN W, CAI W, WAN Z H .Experimental study on flow characteristics of domestic imported 340 MW steam turbine unit[J].Jiangxi Electric Power,2019,43(2):49-51. doi:10.3969/j.issn.1006-348X.2019.02.013 | |
17 | 张军辉,杜献伟,张文涛 .300 MW纯凝机组供热改造经济性分析[J].发电技术,2019,40(1):71-73. doi:10.12096/j.2096-4528.pgt.18068 |
ZHANG J H, DU X W, ZHANG W T .Economic analysis of heating reform of 300 MW condensing power plant[J].Power Generation Technology,2019,40(1):71-73. doi:10.12096/j.2096-4528.pgt.18068 |
[1] | Yanfang LIANG, Shuxuan PENG, Yongjun CUI, Jianchao LUO, Yaonian HE, Linchao BAI, Jinglun FU. Calculation of Heat Transfer Performance of Steam Turbine Shaft Sealing Heater [J]. Power Generation Technology, 2023, 44(6): 817-823. |
[2] | Honghui SHI, Haibo WANG, Rongxiu CAO, Li YAO, Xin YAN. Research on Aerodynamic and Strength Performance of Last Stage in High-Pressure Cylinder of Steam Turbine Under Variable Working Conditions [J]. Power Generation Technology, 2022, 43(6): 959-969. |
[3] | Qiyao ZUO, Zhen TANG, Huiyong LI, Ying ZHANG, Jiangfeng WANG. Overview on the Current Situation of Steam Turbine Low-Pressure Cylinder Zero-Output Technology Under Background of Power Grid Peak Regulation [J]. Power Generation Technology, 2022, 43(4): 645-654. |
[4] | Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 500-508. |
[5] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[6] | Yunfeng LIU, Yufeng LI, Jian WANG, Yiliang MA, Chun GUAN. Study on Water Erosion in Deep Peak Shaving of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 473-479. |
[7] | Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station [J]. Power Generation Technology, 2021, 42(4): 464-472. |
[8] | Jing WANG, Jinfu YANG, Liqiang DUAN, Liguo TIAN, Yutian JING, Ming YANG. Optimal Design of Steam Turbine System for Advanced Ultra-supercritical Double Reheat Coal-fired Units [J]. Power Generation Technology, 2021, 42(4): 480-488. |
[9] | Xiaojun HUANG,Xiangguo DU. Effect of 600 MW Supercritical Steam Turbine Prolonging Running Time of Mixing Valve on Unit Vibration [J]. Power Generation Technology, 2019, 40(2): 175-180. |
[10] | Yun LUO,Xuelin CHEN,Ruidong LI,Yongjian SU,Yiwei XU,Junkai CHAO,Pengzhu LI,Haibin REN. Prediction Model and Application of Turbine Regulating Stage Pressure Under Variable Conditions [J]. Power Generation Technology, 2019, 40(2): 161-167. |
[11] | Lihua CAO,Kai ZHOU,Heyong SI. Study on Installing Deflector in Exhaust Hood of Steam Turbine Based on Quadratic Regressive Orthogonal Experiment [J]. Power Generation Technology, 2019, 40(1): 56-60. |
[12] | Chuanling LIU,Minghui LIU,Zhenjiang CHEN,Ang SONG. Analysis on the Change of Steam Turbine Back Pressure Under Operation of Low Pressure Economizer [J]. Power Generation Technology, 2018, 39(4): 378-381. |
[13] | Yi LI. Heat Supply System of 2×300MW Units' Circulating Water Waste Heat [J]. Power Generation Technology, 2018, 39(3): 244-248. |
[14] | WANG Yu, XU Weixuan, GUO Baoren. Vibration Test and Analysis of Dynamic Balancing without Test-mass on Multi-plane for a 350MW Turbo-generator Unit [J]. Power Generation Technology, 2017, 38(6): 53-56. |
[15] | GUO Shuang, WANG Yu, WANG Yan-dong. Process Analysis of a 600MW Subcritical Air-cooled Unit Speed Up to 3000r/min [J]. Power Generation Technology, 2017, 38(1): 48-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||