Power Generation Technology ›› 2021, Vol. 42 ›› Issue (4): 464-472.DOI: 10.12096/j.2096-4528.pgt.21067
• Intelligent Turbine Power Generation Technology • Previous Articles Next Articles
Yuting WANG(), Yanqi CHEN, Gang XU(
), Heng CHEN
Received:
2021-05-28
Published:
2021-08-31
Online:
2021-07-22
Contact:
Gang XU
Supported by:
CLC Number:
Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station[J]. Power Generation Technology, 2021, 42(4): 464-472.
内缸 | 内导流环 | 外缸 | 外导流环 | |||||||
直径 | 高度 | 直径 | 高度 | 直径 | 高度 | 直径 | 高度 | |||
3 260 | 7 721 | 8 90 | 7 721 | 3 454 | 7 721 | 4 657 | 7 721 |
Tab. 1 Exhaust hood geometry mm
内缸 | 内导流环 | 外缸 | 外导流环 | |||||||
直径 | 高度 | 直径 | 高度 | 直径 | 高度 | 直径 | 高度 | |||
3 260 | 7 721 | 8 90 | 7 721 | 3 454 | 7 721 | 4 657 | 7 721 |
低压加热器 | 给水泵汽轮机排汽口 | 减温减压装置进汽口 | 最上层管束平面 | |||||||
直径 | 高度 | 直径 | 高度 | 直径 | 高度 | 高度 | ||||
1 860 | 1 920 | 2 100 | 1 945 | 820 | 1 920 | -850 |
Tab. 2 Internal component structure of condenser throat mm
低压加热器 | 给水泵汽轮机排汽口 | 减温减压装置进汽口 | 最上层管束平面 | |||||||
直径 | 高度 | 直径 | 高度 | 直径 | 高度 | 高度 | ||||
1 860 | 1 920 | 2 100 | 1 945 | 820 | 1 920 | -850 |
进口尺寸/mm | 高度/mm | 出口尺寸/mm | 扩散角/(°) |
6 680×7 580 | 4 622 | 10 892×7 580 | 62.5 |
Tab. 3 Condenser throat geometry
进口尺寸/mm | 高度/mm | 出口尺寸/mm | 扩散角/(°) |
6 680×7 580 | 4 622 | 10 892×7 580 | 62.5 |
参数 | 原结构 | 优化方案 |
静压恢复系数 | 0.216 | 0.176 |
总压损失系数 | 0.502 | 0.593 |
均匀性系数 | 0.607 | 0.705 |
Tab. 4 Comparison of flow field characteristic indexes before and after optimization
参数 | 原结构 | 优化方案 |
静压恢复系数 | 0.216 | 0.176 |
总压损失系数 | 0.502 | 0.593 |
均匀性系数 | 0.607 | 0.705 |
工况 | 给水泵汽轮机排汽量/(t/h) | 主汽排汽量/(t/h) |
阀门全开工况 | 65.167 | 1 109.332 |
额定工况 | 69 | 1 153.9 |
Tab. 5 Comparison of exhaust volume between valve in full open condition and rated condition
工况 | 给水泵汽轮机排汽量/(t/h) | 主汽排汽量/(t/h) |
阀门全开工况 | 65.167 | 1 109.332 |
额定工况 | 69 | 1 153.9 |
温度/℃ | ≤20 | 100 | 150 | 200 |
许用应力/MPa | 113 | 113 | 113 | 105 |
Tab. 6 Allowable stresses of guide plate at various temperatures
温度/℃ | ≤20 | 100 | 150 | 200 |
许用应力/MPa | 113 | 113 | 113 | 105 |
1 | 沈士一, 庄贺庆, 康松, 等. 汽轮机原理[M]. 北京: 中国电力出版社, 1992: 125- 130. |
SHEN S Y , ZHUANG H Q , KANG S , et al. The steam turbine principle[M]. Beijing: China Electric Power Press, 1992: 125- 130. | |
2 |
钟达文, 孟继安, 朱晓磊, 等. 600MW机组凝汽器壳侧数值模拟与应用[J]. 汽轮机技术, 2019, 61 (2): 127- 130.
DOI |
ZHONG D W , MENG J A , ZHU X L , et al. 600MW condenser shell side of the numerical simulation and application[J]. Turbine Technology, 2019, 61 (2): 127- 130.
DOI |
|
3 |
VEERABATHRASWAMY K , SENTHIL K A . Effective boundary conditions and turbulence modeling for the analysis of steam turbine exhaust hood[J]. Applied Thermal Engineering, 2016, 103, 773- 780.
DOI |
4 |
LIN A Q , CHANG X Y , CAO L H , et al. Effect of wet steam on aerodynamic performance of low-pressure exhaust passage with last stage blade[J]. Journal of Applied Fluid Mechanics, 2019, 12 (6): 1837- 1845.
DOI |
5 | BEEVERS A, CONGIU F, PENGUE F, et al. An analysis of the merits of CFD for the performances prediction of a low pressure steam turbine radial diffuser[C]//ASME Turbo Expo: Power For Land, Sea and Air, Glasgow, UK, 2010. |
6 | ZOE B , GRANT L , SIMON H . A literature review of low pressure steam turbine exhaust hood and diffuser studies[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135, 256- 262. |
7 |
曹丽华, 郭婷婷, 李勇. 300 MW汽轮机凝汽器喉部出口流场的三维数值模拟[J]. 中国电机工程学报, 2006, 26 (11): 56- 59.
DOI |
CAO L H , GUO T T , LI Y . Three-dimensional numerical simulation of the outlet flow field of the 300 MW steam turbine condenser throat[J]. Proceedings of the CSEE, 2006, 26 (11): 56- 59.
DOI |
|
8 |
陈裕. 凝汽器喉部排汽优化改造的实用性分析[J]. 发电设备, 2017, 31 (5): 353- 355.
DOI |
CHEN Y . Retrofit analysis for exhaust mode optimization of a condenser throat[J]. Power Equipment, 2017, 31 (5): 353- 355.
DOI |
|
9 |
WANG H , ZHU X , DU Z . Aerodynamic optimization for low pressure turbine exhaust hood using Kriging surrogate model[J]. International Communications in Heat and Mass Transfer, 2010, 37 (8): 998- 1003.
DOI |
10 | ZHANG L Y , GAN X P , FRANCESCO C G , et al. Performance prediction and optimization of low pressure steam turbine radial diffuser at design and off-design conditions using streamline curvature method[J]. Journal of Engineering for Gas Turbines and Power-Transactions of The ASME, 2017, 139 (7): 152- 160. |
11 | WANG H, ZHU X, DU Z, et al. Aerodynamic optimization system development for low pressure exhaust hood of steam turbine[C]//ASME Turbo Expo: Power for Land, Sea, & Air. 2010: 2139-2148. |
12 |
GRIBIN V G , PARAMONOV A N , MITROKHOVA O M . The effect of condensing steam turbine exhaust hood body geometry on exhaust performance efficiency[J]. Thermal Engineering, 2018, 65 (6): 371- 378.
DOI |
13 | CAO L , LIN A , LI Y , et al. Optimum tilt angle of flow guide in steam turbine exhaust hood considering the effect of last stage flow field[J]. Chinese Journal of Mechanical Engineering, 2017, 30 (4): 1- 9. |
14 | 杨新健. 大型汽轮机排汽通道流场三维数值模拟[D]. 北京: 华北电力大学, 2014. |
YANG X J. Three-dimensions numerical simulation of flow field in exhaust passage of large steam turbine[D]. Beijing: North China Electric Power University, 2014. | |
15 |
张勇, 贾昌盛, 许衍军. 凝汽器喉部流场数值模拟[J]. 发电设备, 2018, 32 (6): 383- 386.
DOI |
ZHANG Y , GU C S , XU Y J . Numerical simulation of the flow field in a condenser throat[J]. Power Equipment, 2018, 32 (6): 383- 386.
DOI |
|
16 | 刘康. 1000MW湿冷机组冷端系统汽侧流场优化研究[D]. 北京: 华北电力大学, 2017. |
LIU K. Optimization research for steam flow field of cold-end system in a 1000MW wet-cooling unit[D]. Beijing: North China Electric Power University, 2017. | |
17 | FREITAS C J . The issue of numerical uncertainty[J]. Applied Mathematical Modelling, 2002, 25 (2): 237- 248. |
18 | 上原春男, 藤井哲, 朱永荃. 表面式凝汽器的总传热系数和热力计算[J]. 电站辅机, 1984, (1): 21- 34. |
HARUO U , FUJII Z , ZHU Y Q . The total heat transfer coefficient and surface type condenser thermodynamic calculation[J]. Power station auxiliary equipment, 1984, (1): 21- 34. | |
19 |
周兰欣, 邢朱苗, 陈素敏. 小机排汽对凝汽器喉部流场影响的三维数值分析[J]. 华北电力大学学报(自然科学版), 2009, 36 (3): 72- 75.
DOI |
ZHOU L X , XING Z M , CHEN S M . Three-dimensional numerical simulation of the influence of the exhausting of small turbine to the turbine's condenser throat[J]. Journal of North China Electric Power University (Natural Science Edition), 2009, 39 (3): 72- 75.
DOI |
|
20 | JIANG X Q , LIN A Q , MALIK A , et al. Numerical investigation on aerodynamic characteristics of exhaust passage with consideration of multi-factor components in a supercritical steam turbine[J]. Applied Thermal Engineering, 2019, 162, 152- 159. |
[1] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[2] | Hongwei ZHANG, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Study on the Characteristics of Heavy Metal Lead in Desulfurization Sludge Solidified by Coal-Fired Fly Ash in Power Plant [J]. Power Generation Technology, 2024, 45(3): 527-534. |
[3] | Yanfang LIANG, Shuxuan PENG, Yongjun CUI, Jianchao LUO, Yaonian HE, Linchao BAI, Jinglun FU. Calculation of Heat Transfer Performance of Steam Turbine Shaft Sealing Heater [J]. Power Generation Technology, 2023, 44(6): 817-823. |
[4] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[5] | Honghui SHI, Haibo WANG, Rongxiu CAO, Li YAO, Xin YAN. Research on Aerodynamic and Strength Performance of Last Stage in High-Pressure Cylinder of Steam Turbine Under Variable Working Conditions [J]. Power Generation Technology, 2022, 43(6): 959-969. |
[6] | Zhiyun WANG, Yuzhu ZHAO, Xuedong WANG, Yuanshu ZHANG. Experimental Study on Regulation Characteristics of Intermediate Pressure Cylinder Regulating Valves of Heat Supply Steam Turbine Under Peak Regulating Mechanism [J]. Power Generation Technology, 2022, 43(6): 970-976. |
[7] | Qiyao ZUO, Zhen TANG, Huiyong LI, Ying ZHANG, Jiangfeng WANG. Overview on the Current Situation of Steam Turbine Low-Pressure Cylinder Zero-Output Technology Under Background of Power Grid Peak Regulation [J]. Power Generation Technology, 2022, 43(4): 645-654. |
[8] | Li WANG, Zhi ZHANG, Yaolu SHI, Chao XU, Jie SUN. Research Progress of Parabolic Trough Solar Collector Based on Numerical Simulation [J]. Power Generation Technology, 2021, 42(6): 643-652. |
[9] | Jing WANG, Jinfu YANG, Liqiang DUAN, Liguo TIAN, Yutian JING, Ming YANG. Optimal Design of Steam Turbine System for Advanced Ultra-supercritical Double Reheat Coal-fired Units [J]. Power Generation Technology, 2021, 42(4): 480-488. |
[10] | Yunfeng LIU, Yufeng LI, Jian WANG, Yiliang MA, Chun GUAN. Study on Water Erosion in Deep Peak Shaving of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 473-479. |
[11] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[12] | Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 500-508. |
[13] | Gang CHEN, Jinfeng LIU, Dazheng LI, Hua CHENG. Research and Application of Optimization Technology of Medium Speed Pulverizing System [J]. Power Generation Technology, 2021, 42(3): 363-373. |
[14] | Shuangping ZHANG, Weixiong CHEN, Xibu JIA, Yuan YUAN. Simulation Study on Influence of Installation Height of Mist Eliminator on Liquid Holdup of Flue Gas in Desulfurization Tower [J]. Power Generation Technology, 2021, 42(2): 247-253. |
[15] | Qiyu WENG,Duanle LI,Yuqun ZHUO. Influence of NH3 on Hg0 Oxidation Performance of SCR Catalyst [J]. Power Generation Technology, 2020, 41(5): 471-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||