Power Generation Technology ›› 2022, Vol. 43 ›› Issue (6): 959-969.DOI: 10.12096/j.2096-4528.pgt.21105
• Power Generation and Environmental Protection • Previous Articles Next Articles
Honghui SHI1, Haibo WANG2, Rongxiu CAO1, Li YAO1, Xin YAN2
Received:
2021-12-31
Published:
2022-12-31
Online:
2023-01-03
Supported by:
CLC Number:
Honghui SHI, Haibo WANG, Rongxiu CAO, Li YAO, Xin YAN. Research on Aerodynamic and Strength Performance of Last Stage in High-Pressure Cylinder of Steam Turbine Under Variable Working Conditions[J]. Power Generation Technology, 2022, 43(6): 959-969.
叶栅 | 叶片数 | 叶高/mm | 弦长/mm | 汽封间隙/mm |
---|---|---|---|---|
S11 | 80 | 106.5 | 38 | 0.8 |
R11 | 64 | 110.5 | 50 | 0.8 |
S12 | 80 | 114.6 | 42 | 0.9 |
R12 | 64 | 118.3 | 59 | 0.9 |
Tab. 1 Main geometrical parameters for blades and seals
叶栅 | 叶片数 | 叶高/mm | 弦长/mm | 汽封间隙/mm |
---|---|---|---|---|
S11 | 80 | 106.5 | 38 | 0.8 |
R11 | 64 | 110.5 | 50 | 0.8 |
S12 | 80 | 114.6 | 42 | 0.9 |
R12 | 64 | 118.3 | 59 | 0.9 |
边界 | 设置(设计工况) |
---|---|
进口总压Pin /MPa | 9.834 |
进口总温Tin /K | 708.05 |
出口静压Pout /MPa | 7.76 |
动、静叶栅交界面(1)(2)(3) | 冻结转子 |
汽封-主通道交界面(4)(6)(8)(10) | 一般连接 |
汽封-主通道交界面(5)(7)(9)(11) | 冻结转子 |
Tab. 2 Boundary conditions of CFD computational model
边界 | 设置(设计工况) |
---|---|
进口总压Pin /MPa | 9.834 |
进口总温Tin /K | 708.05 |
出口静压Pout /MPa | 7.76 |
动、静叶栅交界面(1)(2)(3) | 冻结转子 |
汽封-主通道交界面(4)(6)(8)(10) | 一般连接 |
汽封-主通道交界面(5)(7)(9)(11) | 冻结转子 |
ywall/mm | 近壁面平均y+ | 相对偏差/% | ||
---|---|---|---|---|
0.01 | 70.6 | 0.905 8 | 747.08 | 2.037 |
0.005 | 33.1 | 0.904 9 | 746.06 | 1.897 |
0.0025 | 16.9 | 0.905 2 | 742.11 | 1.358 |
0.001 | 7.8 | 0.904 4 | 734.49 | 0.317 |
0.000 5 | 3.6 | 0.904 2 | 732.17 | — |
Tab. 3 Independency analysis of the first mesh layer distance near wall
ywall/mm | 近壁面平均y+ | 相对偏差/% | ||
---|---|---|---|---|
0.01 | 70.6 | 0.905 8 | 747.08 | 2.037 |
0.005 | 33.1 | 0.904 9 | 746.06 | 1.897 |
0.0025 | 16.9 | 0.905 2 | 742.11 | 1.358 |
0.001 | 7.8 | 0.904 4 | 734.49 | 0.317 |
0.000 5 | 3.6 | 0.904 2 | 732.17 | — |
节点数/万 | ywall/mm | 相对偏差/% | ||
---|---|---|---|---|
490 | 0.001 | 0.902 3 | 734.87 | 0.204 |
710 | 0.001 | 0.904 4 | 734.49 | 0.152 |
1 049 | 0.001 | 0.904 9 | 733.95 | 0.079 |
Tab. 4 Independency analysis for grid density of blades
节点数/万 | ywall/mm | 相对偏差/% | ||
---|---|---|---|---|
490 | 0.001 | 0.902 3 | 734.87 | 0.204 |
710 | 0.001 | 0.904 4 | 734.49 | 0.152 |
1 049 | 0.001 | 0.904 9 | 733.95 | 0.079 |
节点数/万 | ywall/mm | 相对偏差/% | ||
---|---|---|---|---|
238 | 0.001 | 0.904 9 | 734.51 | 0.016 |
479 | 0.001 | 0.904 4 | 734.49 | 0.015 |
958 | 0.001 | 0.904 4 | 734.45 | 0.010 |
Tab. 5 Independency analysis for grid density of seals
节点数/万 | ywall/mm | 相对偏差/% | ||
---|---|---|---|---|
238 | 0.001 | 0.904 9 | 734.51 | 0.016 |
479 | 0.001 | 0.904 4 | 734.49 | 0.015 |
958 | 0.001 | 0.904 4 | 734.45 | 0.010 |
参数 | 弹性模量/ MPa | 泊松比 | 密度/ (kg·s-3) | 屈服强度 |
---|---|---|---|---|
数值 | 1.99×105 | 0.337 | 7 750 | 735 |
Tab. 6 Main mechanical property parameters of 2Cr13 at 400 ℃
参数 | 弹性模量/ MPa | 泊松比 | 密度/ (kg·s-3) | 屈服强度 |
---|---|---|---|---|
数值 | 1.99×105 | 0.337 | 7 750 | 735 |
工况 | Pin/MPa | Tout/K | 功率占比/% | ||
---|---|---|---|---|---|
设计工况 | 9.834 | 673.44 | 738.93 | 45.36 | 100 |
8%抽汽 | 9.549 | 676.82 | 680.18 | 36.95 | 81.46 |
15%抽汽 | 9.305 | 680.63 | 628.22 | 30.05 | 66.24 |
20%抽汽 | 9.135 | 683.42 | 591.30 | 25.45 | 56.11 |
Tab. 7 Overall parameters of final two stage variable conditions of high-pressure cylinder
工况 | Pin/MPa | Tout/K | 功率占比/% | ||
---|---|---|---|---|---|
设计工况 | 9.834 | 673.44 | 738.93 | 45.36 | 100 |
8%抽汽 | 9.549 | 676.82 | 680.18 | 36.95 | 81.46 |
15%抽汽 | 9.305 | 680.63 | 628.22 | 30.05 | 66.24 |
20%抽汽 | 9.135 | 683.42 | 591.30 | 25.45 | 56.11 |
工况 | 位置① | 位置② | 位置③ | 位置④ | 位置⑤ | 位置⑥ |
---|---|---|---|---|---|---|
设计工况 | 236.8 | 289.1 | 391.4 | 214.2 | 420.7 | 379.5 |
8%抽汽 | 238.7 | 283.0 | 375.2 | 207.7 | 408.7 | 374.4 |
15%抽汽 | 240.1 | 278.9 | 361.2 | 202.1 | 398.4 | 370.0 |
20%抽汽 | 240.9 | 276.2 | 351.2 | 198.1 | 390.9 | 366.8 |
Tab. 8 Stress of key parts of blade and disk under variable conditions
工况 | 位置① | 位置② | 位置③ | 位置④ | 位置⑤ | 位置⑥ |
---|---|---|---|---|---|---|
设计工况 | 236.8 | 289.1 | 391.4 | 214.2 | 420.7 | 379.5 |
8%抽汽 | 238.7 | 283.0 | 375.2 | 207.7 | 408.7 | 374.4 |
15%抽汽 | 240.1 | 278.9 | 361.2 | 202.1 | 398.4 | 370.0 |
20%抽汽 | 240.9 | 276.2 | 351.2 | 198.1 | 390.9 | 366.8 |
工况 | 径向 | 切向 | 轴向 | 总位移 |
---|---|---|---|---|
设计工况 | 0.212 | 0.029 | 0.400 | 0.443 |
8%抽汽 | 0.206 | 0.028 | 0.363 | 0.408 |
15%抽汽 | 0.200 | 0.027 | 0.331 | 0.379 |
20%抽汽 | 0.196 | 0.027 | 0.308 | 0.358 |
Tab. 9 Maximum deformation displacement of blade tip under variable conditions
工况 | 径向 | 切向 | 轴向 | 总位移 |
---|---|---|---|---|
设计工况 | 0.212 | 0.029 | 0.400 | 0.443 |
8%抽汽 | 0.206 | 0.028 | 0.363 | 0.408 |
15%抽汽 | 0.200 | 0.027 | 0.331 | 0.379 |
20%抽汽 | 0.196 | 0.027 | 0.308 | 0.358 |
1 | 王振铭 .大中型火电机组供热改造势在必行[J].热电技术,2010(3):4-9. |
WANG Z M .Heating transformation of large and medium-sized thermal power units[J].Cogeneration Power Technology,2010(3):4-9. | |
2 | 王文焕,王炯铭,左绍俊,等 .基于热用户参数变化的汽轮机组协调供热特性研究[J].电力科技与环保,2022,38(1):1-9. |
WANG W H, WANG J M, ZUO S J,et al .Coordinated heating characteristics of steam turbine based on changes of user parameters[J].Electric Power Technology and Environmental Protection,2022, | |
38(1):1-9. | |
3 | 邵帅,邓清华,时和双,等 .不同容积流量下汽轮机低压缸末三级定常流动数值研究[J].西安交通大学学报,2013,47(1):15-20. doi:10.7652/xjtuxb201301004 |
SHAO S, DENG Q H, SHI H S,et al .Numerical investigation on flow characteristics in steam turbine low pressure cylinder and LPEH under different volume flow rate conditions[J].Journal of Xi’an Jiaotong University,2013,47(1):15-20. doi:10.7652/xjtuxb201301004 | |
4 | 张元桥,李彬,杨建道,等 .末级长叶片透平级气动性能的数值研究[J].热力透平,2016,45(3):200-206. doi:10.13707/j.cnki.31-1922/th.2016.03.005 |
ZHANG Y Q, LI B, YANG J D,et al .Numerical investigations on aerodynamic performance of last stage long blade[J].Thermal Turbine,2016,45(3):200-206. doi:10.13707/j.cnki.31-1922/th.2016.03.005 | |
5 | 刘凤友,李强,盛伟,等 .某电厂汽轮机低压缸零出力供热工况低压末级叶片流场特性分析[J].汽轮机技术,2019,61(5):355-360. doi:10.3969/j.issn.1001-5884.2019.05.009 |
LIU F Y, LI Q, SHENG W,et al .Analysis of low-pressure last stage flow field characteristics of a steam turbine low pressure cylinder with zero output heat supply in a power plant[J].Turbine Technology,2019,61(5):355-360. doi:10.3969/j.issn.1001-5884.2019.05.009 | |
6 | 李明宇,韦存海,刘网扣,等 .低压缸小容积流量工况的计算分析和改造措施[J].动力工程学报,2020,40(3):206-212. |
LI M Y, WEI C H, LIU W K,et al .Calculation and analysis of a low-pressure cylinder under small flow conditions and the corresponding retrofit measures[J].Journal of Chinese Society of Power Engineering,2020,40(3):206-212. | |
7 | 康剑南,周旭哲,张艳辉,等 .汽轮机末级叶片模态振型与变负荷动应力的三维数值模拟[J].节能技术,2019,37(3):260-264. doi:10.3969/j.issn.1002-6339.2019.03.013 |
KANG J N, ZHOU X Z, ZHANG Y H,et al .Three-dimensional numerical simulation of modal vibration shape and dynamic stresses under the variable load operation of steam turbine’s last stage blade[J].Energy Conservation Technology,2019,37(3):260-264. doi:10.3969/j.issn.1002-6339.2019.03.013 | |
8 | 钱万利,南国防,唐敏 .汽轮机自带冠阻尼叶片强度与振动特性有限元分析[J].能源工程,2019(6):84-90. |
QIAN W L, NAN G F, TANG M .Finite element analysis of strength and vibration characteristics of steam turbine shrouded blade[J].Energy Engineering,2019(6):84-90. | |
9 | RICHTER C H .Structural design of modern steam turbine blades using ADINA[J].Journal of Computers and Structures,2003,81(8):919-927. doi:10.1016/s0045-7949(02)00426-1 |
10 | YU D, LI F, YANG J,et al .Structural optimization of fir-tree root and groove for turbine blade with splines and genetic algorithm[C]//Proceedings of the ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.Seoul,South Korea:ASME,2016:56518. doi:10.1115/gt2016-56518 |
11 | SHANKAR M, KUMAR K, PRASAD S L .T-root blades in a steam turbine rotor:a case study[J].Journal of Engineering Failure Analysis,2010,17(5):1205-1212. doi:10.1016/j.engfailanal.2010.02.006 |
12 | GOWDA K K, PRASAD S L, NAGARAJAIAH V .Design optimization of T-root geometry of a gas engine HP compressor rotor blade for lifing the blade against fretting failure[C]//Proceedings of the ASME 2016 Power Conference.Charlotte,USA:ASME,2016:59331. doi:10.1115/power2016-59331 |
13 | HENSON J, DOLAN R, THOMAS G,et al .Automated optimization of T-root grooves with B-splines and finite element analysis[C]//Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition.Montréal,Canada:ASME,2015:43179. doi:10.1115/gt2015-43179 |
14 | LOLIS P, GUARDINO C, BROWN T,et al .Mechanical intensity and design analysis suite (MIDAS):a tool for rapid finite element analysis (FEA) of steam turbine blades[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.Seoul,South Korea:ASME,2016:57641. doi:10.1115/gt2016-57641 |
15 | EHLERS J, RESSING H, RIXEN D,et al .Optimization of a steam turbine’s double-T toot through contact surface convexity[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.Seoul,South Korea:ASME,2016:56136. doi:10.1115/gt2016-56136 |
16 | 宋学官,蔡林,张华 .ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012:5-8. |
SONG X G, CAI L, ZHANG H .ANSYS fluid-solid coupling analysis and engineering example[M].Beijing:China Water & Power Press,2012:5-8. | |
17 | 陈秀秀,晏鑫,李军 .蜂窝叶顶密封对透平级气动性能的影响研究[J].西安交通大学学报,2016,50(4):14-20. doi:10.7652/xjtuxb201604003 |
CHEN X X, YAN X, LI J .Effect of honeycomb shroud seals on aerodynamic performance of turbine stages[J].Journal of Xi’an Jiaotong University,2016,50(4):14-20. doi:10.7652/xjtuxb201604003 | |
18 | YAN X, DAI X .Effects of labyrinth fin wear on aerodynamic performance of turbine stages-part I:bending damages[C]//Proceedings of ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition.Phoenix,USA:ASME,2019:90153. doi:10.1115/gt2019-90153 |
19 | 干勇,田志凌,董翰,等 .中国材料工程大典第3卷:钢铁材料工程(下)[M].北京:化学工业出版社,2005:882-885. |
GAN Y, TIAN Z L, DONG H,et al .China code of materials engineering volume 3:steel materials engineering (II)[M].Beijing:Chemical Industry Press,2005:882-885. | |
20 | 李清,黄竹青,王运民,等 .汽轮机调节级变工况时焓降和反动度的计算[J].汽轮机技术,2012,54(1):21-23. doi:10.3969/j.issn.1001-5884.2012.01.006 |
LI Q, HUANG Z Q, WANG Y M,et al .The calculation of the steam turbine governing stage enthalpy drop and reaction degree in off-design condition[J].Turbine Technology,2012,54(1):21-23. doi:10.3969/j.issn.1001-5884.2012.01.006 |
[1] | Zhipeng QIN, Gaosheng WEI, Liu CUI, Xiaoze DU. Study on Aerodynamic Performance of Wind Turbine Airfoil With Combined S-Slot and Trailing Edge Flap Control [J]. Power Generation Technology, 2024, 45(1): 24-31. |
[2] | Yanfang LIANG, Shuxuan PENG, Yongjun CUI, Jianchao LUO, Yaonian HE, Linchao BAI, Jinglun FU. Calculation of Heat Transfer Performance of Steam Turbine Shaft Sealing Heater [J]. Power Generation Technology, 2023, 44(6): 817-823. |
[3] | Zhiyun WANG, Yuzhu ZHAO, Xuedong WANG, Yuanshu ZHANG. Experimental Study on Regulation Characteristics of Intermediate Pressure Cylinder Regulating Valves of Heat Supply Steam Turbine Under Peak Regulating Mechanism [J]. Power Generation Technology, 2022, 43(6): 970-976. |
[4] | Qiyao ZUO, Zhen TANG, Huiyong LI, Ying ZHANG, Jiangfeng WANG. Overview on the Current Situation of Steam Turbine Low-Pressure Cylinder Zero-Output Technology Under Background of Power Grid Peak Regulation [J]. Power Generation Technology, 2022, 43(4): 645-654. |
[5] | Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 500-508. |
[6] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[7] | Yunfeng LIU, Yufeng LI, Jian WANG, Yiliang MA, Chun GUAN. Study on Water Erosion in Deep Peak Shaving of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 473-479. |
[8] | Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station [J]. Power Generation Technology, 2021, 42(4): 464-472. |
[9] | Jing WANG, Jinfu YANG, Liqiang DUAN, Liguo TIAN, Yutian JING, Ming YANG. Optimal Design of Steam Turbine System for Advanced Ultra-supercritical Double Reheat Coal-fired Units [J]. Power Generation Technology, 2021, 42(4): 480-488. |
[10] | Xiaojun HUANG,Xiangguo DU. Effect of 600 MW Supercritical Steam Turbine Prolonging Running Time of Mixing Valve on Unit Vibration [J]. Power Generation Technology, 2019, 40(2): 175-180. |
[11] | Yun LUO,Xuelin CHEN,Ruidong LI,Yongjian SU,Yiwei XU,Junkai CHAO,Pengzhu LI,Haibin REN. Prediction Model and Application of Turbine Regulating Stage Pressure Under Variable Conditions [J]. Power Generation Technology, 2019, 40(2): 161-167. |
[12] | Lihua CAO,Kai ZHOU,Heyong SI. Study on Installing Deflector in Exhaust Hood of Steam Turbine Based on Quadratic Regressive Orthogonal Experiment [J]. Power Generation Technology, 2019, 40(1): 56-60. |
[13] | Chuanling LIU,Minghui LIU,Zhenjiang CHEN,Ang SONG. Analysis on the Change of Steam Turbine Back Pressure Under Operation of Low Pressure Economizer [J]. Power Generation Technology, 2018, 39(4): 378-381. |
[14] | Yi LI. Heat Supply System of 2×300MW Units' Circulating Water Waste Heat [J]. Power Generation Technology, 2018, 39(3): 244-248. |
[15] | WANG Yu, XU Weixuan, GUO Baoren. Vibration Test and Analysis of Dynamic Balancing without Test-mass on Multi-plane for a 350MW Turbo-generator Unit [J]. Power Generation Technology, 2017, 38(6): 53-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||