Power Generation Technology ›› 2022, Vol. 43 ›› Issue (2): 328-340.DOI: 10.12096/j.2096-4528.pgt.21058
• Energy Storage • Previous Articles Next Articles
Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU
Received:
2021-05-17
Published:
2022-04-30
Online:
2022-05-13
Supported by:
CLC Number:
Zexu WANG, Bingchen LI, Yao XU, Qian LIU, Kaixuan LI, Xing JU. Lithium-ion Battery Thermal Management System Based on the Combination of Supercooled Phase Change Material and Thermal Switch[J]. Power Generation Technology, 2022, 43(2): 328-340.
名称 | 符号 | 数值 |
---|---|---|
模型高度/mm | XH | 65 |
相变材料底面积/ | 102.71 | |
电池半径/mm | 9 | |
移动铜板厚度/mm | 1 | |
空气层厚度/mm | 1.05 | |
冷板厚度/mm | 5 | |
冷板两侧电池间距/mm | 30 | |
冷板同侧电池间距/mm | 29.3 |
Tab. 1 Geometric parameters of model
名称 | 符号 | 数值 |
---|---|---|
模型高度/mm | XH | 65 |
相变材料底面积/ | 102.71 | |
电池半径/mm | 9 | |
移动铜板厚度/mm | 1 | |
空气层厚度/mm | 1.05 | |
冷板厚度/mm | 5 | |
冷板两侧电池间距/mm | 30 | |
冷板同侧电池间距/mm | 29.3 |
材料 | 密度/ (kg/m3) | 导热系数/[W/(m·K)] | 比热/ [J/(kg·K)] | 潜热/ (kJ/kg) |
---|---|---|---|---|
18650电池 | 2 722 | 2.6(x方向) | 970 | — |
2.6(y方向) | ||||
28(z方向) | ||||
六水合 氯化钙 | 1 496(l) | 0.54(l) | 2 200(l) | 190.8 |
1 802(s) | 1.088(s) | 1 400(s) | ||
空气 | 1.205 | 0.025 9 | 1.005 | — |
铜 | 8 900 | 401 | 390 | — |
Tab. 2 Physical parameters of each part of the material
材料 | 密度/ (kg/m3) | 导热系数/[W/(m·K)] | 比热/ [J/(kg·K)] | 潜热/ (kJ/kg) |
---|---|---|---|---|
18650电池 | 2 722 | 2.6(x方向) | 970 | — |
2.6(y方向) | ||||
28(z方向) | ||||
六水合 氯化钙 | 1 496(l) | 0.54(l) | 2 200(l) | 190.8 |
1 802(s) | 1.088(s) | 1 400(s) | ||
空气 | 1.205 | 0.025 9 | 1.005 | — |
铜 | 8 900 | 401 | 390 | — |
1 | 宋永华,阳岳希,胡泽春.电动汽车电池的现状及发展趋势[J].电网技术,2011,35(4):1-7. doi:10.1097/MCC.0b013e328344b397 |
SONG Y H, YANG Y X, HU Z C. Current status and development trend of electric vehicle batteries[J]. Power Grid Technology,2011,35(4):1-7. doi:10.1097/MCC.0b013e328344b397 | |
2 | 闫金定.锂离子电池发展现状及其前景分析[J].航空学报,2014,35(10):2767-2775. doi:10.7527/S1000-6893.2014.0166 |
YAN J D. Analysis of the development status of lithium-ion batteries and their prospects[J].Journal of Aeronautics,2014,35(10):2767-2775. doi:10.7527/S1000-6893.2014.0166 | |
3 | 罗晔.韩国电化学储能系统研发进展[J].分布式能源,2020,5(3):29-33. doi:10.16513/j.2096-2185.DE.2004011 |
LUO Y. Progress in the development of electrochemical energy storage systems in Korea[J].Distributed Energy,2020,5(3):29-33. doi:10.16513/j.2096-2185.DE.2004011 | |
4 | 王鹏博,郑俊超.锂离子电池的发展现状及展望[J].自然杂志,2017,39(4):283-289. doi:10.3969/j.issn.0253-9608.2017.04.006 |
WANG P B, ZHENG J C. Current status and outlook of lithium-ion batteries[J].Nature Journal,2017,39(4):283-289. doi:10.3969/j.issn.0253-9608.2017.04.006 | |
5 | 华政,梁风,姚耀春.电动汽车电池的发展现状与趋势[J].化工进展,2017,36(8):2874-2881. doi:10.16085/j.issn.1000-6613.2017-0007 |
HUA Z, LIANG F, YAO Y C. Development status and trends of electric vehicle batteries[J].Chemical Progress,2017,36(8):2874-2881. doi:10.16085/j.issn.1000-6613.2017-0007 | |
6 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D].合肥:中国科学技术大学,2018. |
HUANG P F. Study on the fire hazard and thermal runaway critical conditions of lithium-ion batteries[D].Hefei:University of Science and Technology of China,2018. | |
7 | 吴凯,张耀,曾毓群,等.锂离子电池安全性能研究[J].化学进展,2011,23(Z1):401-409. |
WU K, ZHANG Y, ZENG Y Q, et al. Study on the safety performance of lithium-ion batteries[J].Advances in Chemistry,2011,23(Z1):401-409. | |
8 | WANG R S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011,15(9):4554-4571. doi:10.1016/j.rser.2011.07.096 |
9 | 梅简,张杰,刘双宇,等.电池储能技术发展现状[J].浙江电力,2020,39(3):75-81. |
MEI J, ZHANG J, LIU S Y, et al. Current status of battery energy storage technology development[J].Zhejiang Electric Power,2020,39(3):75-81. | |
10 | CHEN K, CHEN Y M, LI Z Y, et al. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J].International Journal of Heat and Mass Transfer, 2018, 127(PT.A):393-401. doi:10.1016/j.ijheatmasstransfer.2018.06.131 |
11 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J].Applied Energy, 2019, 242:378-392. doi:10.1016/j.apenergy.2019.03.043 |
12 | 刘倩,石千磊,李凯璇,等.锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究[J].发电技术,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 |
LIU Q, SHI Q L, LI K X, et al. Thermal management of submerged cooling in lithium-ion batteries combined with tessellated topological shunt structure[J].Power Generation Technology,2021,42(2):218-229. doi:10.12096/j.2096-4528.pgt.20111 | |
13 | LIU J, LI H, LI W, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J].Applied Thermal Engineering,2019,164:114421. doi:10.1016/j.applthermaleng.2019.114421 |
14 | 廖智伟. 液冷式18650动力锂电池组温度场分析及优化[D].重庆:重庆交通大学,2018. |
LIAO Z W. Analysis and optimization of temperature field of liquid-cooled 18650 power lithium battery pack[D].Chongqing:Chongqing Jiaotong University,2018. | |
15 | GRECO A, XI J, CAO D D. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J].Journal of Power Sources, 2015, 278:50-68. doi:10.1016/j.jpowsour.2014.12.027 |
16 | SUMAN B, HARIHARAN K S, KOLAKE S M, et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system-science direct[J].Applied Energy, 2016, 181:1-13. doi:10.1016/j.apenergy.2016.08.049 |
17 | 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D].广州:华南理工大学,2013. |
RAO Z H. Thermal management of power battery based on solid-liquid phase change heat transfer medium[D].Guangzhou:South China University of Technology, 2013. | |
18 | BAMDEZH M A, MOLAEIMANESH G R. Impact of system structure on the performance of a hybrid thermal management system for a Li-ion battery module[J].Journal of Power Sources, 2020, 457:227993. doi:10.1016/j.jpowsour.2020.227993 |
19 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J].Applied Thermal Engineering, 175:115331. |
20 | TAO W, TSENG K J, ZHAO J, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J].Applied Energy, 2014, 134:229-238. doi:10.1016/j.apenergy.2014.08.013 |
21 | 闵德平. 电池组结构设计及其热管理液流传热强化研究[D].吉林:吉林大学,2016. |
MIN D P. Research on the structural design of battery pack and its thermal management liquid flow heat transfer enhancement[D].Jilin: Jilin University,2016. | |
22 | 薛超坦. 基于液冷的纯电动汽车锂电池热管理研究[D].吉林:吉林大学,2017. |
XUE C T. Research on the thermal management of pure electric vehicle lithium battery based on liquid cooling [D].Jilin:Jilin University,2017. | |
23 | 吴博.电动汽车锂电池冷却方式综述[J].汽车文摘,2020(11):9-14. |
WU B. A review of cooling methods for electric vehicle lithium batteries[J].Automotive Digest, 2020(11):9-14. | |
24 | 白帆飞,宋文吉,陈明彪,等.锂离子电池组热管理系统研究现状[J].电池,2016,46(3):168-171. doi:10.3969/j.issn.1001-1579.2016.03.014 |
BAI F F, SONG W J, CHEN M B, et al. Current status of research on thermal management system of lithium-ion battery pack[J].Battery,2016,46(3):168-171. doi:10.3969/j.issn.1001-1579.2016.03.014 | |
25 | 李泽群,杨建国.石墨/石蜡相变材料在电池热管理中的应用[J].电源技术,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 |
LI Z Q, YANG J G. Application of graphite/paraffin phase change materials in battery thermal management[J].Power Technology,2020,44(9):1287-1292. doi:10.3969/j.issn.1002-087X.2020.09.012 | |
26 | 杨成亮,贾力,任宏磊.基于相变材料的方形锂电池冷却实验研究[J].工程热物理学报,2020,41(10):2530-2538. |
YANG C L, JIA L, REN H L,et al. Experimental study on the cooling of square lithium batteries based on phase change materials[J].Journal of Engineering Thermophysics, 2020,41(10): 2530-2538. | |
27 | WEI L, JIA L, AN Z J,et al. Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates[J].Journal of Thermal Science, 2020, 29(4): 1001-1009. doi:10.1007/s11630-020-1331-1 |
28 | LEI S, SHI Y, CHEN G. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling[J].Applied Thermal Engineering, 2019, 168:114792. doi:10.1016/j.applthermaleng.2019.114792 |
29 | HAO M, LI J, PAEK S, et al. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy[J].Nature Energy, 2018, 3(10):899-906. doi:10.1038/s41560-018-0243-8 |
30 | 张国庆,饶中浩,吴忠杰,等.采用相变材料冷却的动力电池组的散热性能[J].化工进展,2009,28(1):23-26. doi:10.3321/j.issn:1000-6613.2009.01.005 |
ZHANG G Q, RAO Z H, WU Z J, et al. Heat dissipation performance of power battery pack using phase change material cooling[J].Chemical Progress,2009,28(1):23-26. doi:10.3321/j.issn:1000-6613.2009.01.005 | |
31 | 朱思贤,邹得球,鲍家明,等. 相变材料的过冷特性及调控研究进展[J].材料导报, 2020, 34(19):79-86. doi:10.11896/cldb.19080094 |
ZHU S X, ZOU D Q, BAO J M,et al. Research progress on the subcooling properties and regulation of phase change materials[J].Materials Guide, 2020, 34(19):79-86. doi:10.11896/cldb.19080094 | |
32 | BEAUPERE N, SOUPREMANIEN U, ZALEWSKI L .Nucleation triggering methods in supercooled phase change materials (PCM):a review[J].Thermochimica Acta,2018,670:184-201. doi:10.1016/j.tca.2018.10.009 |
33 | HU H, JIN X, ZHANG X. Effect of supercooling on the solidification process of the phase change material[J].Energy Procedia, 2017, 105:4321-4327. doi:10.1016/j.egypro.2017.03.905 |
34 | YUAN, K, ZHOU, Y, SUN W, FANG, et al. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J].Composites Science and Technology, 2018,156: 78-86. doi:10.1016/j.compscitech.2017.12.021 |
35 | 陈进. 低温固体界面传热过程计算机仿真研究[D].武汉:华中科技大学, 2004. |
CHEN J. Computer simulation of heat transfer processes at low temperature solid interfaces[D].Wuhan:Huazhong University of Science and Technology, 2004. | |
36 | SHI L, HU Y W, HE Y R. Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid[J].Nano Energy,2020,71: 104582. doi:10.1016/j.nanoen.2020.104582 |
37 | YUTA N, KEISUKE S, MAKIKO A. Research and development of mechanical heat switch for spacecraft[C]// The Japan Society of Mechanical Engineers. Proceedings of the Thermal Engineering Conference 2013. Japan:JSME,2013:119-120. |
38 | 刘显茜,邹涛,侯宏英,等.基于Fluent的锂离子电池及模组风冷温度场数值研究[J].软件导刊,2020,19(7):5-10. |
LIU X X, ZOU T, HOU H Y, et al. Numerical study of air-cooled temperature fields of lithium-ion batteries and modules based on Fluent[J].Software Guide,2020,19(7):5-10. | |
39 | CHEN J, KANG S, JIAQIANG E . et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review[J].Journal of Power Sources,2019, 442:227228. doi:10.1016/j.jpowsour.2019.227228 |
40 | BELÉN Z, JOSÉ M M, LUISA F C, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J].Applied Thermal Engineering, 2003,23(3):251-283. doi:10.1016/s1359-4311(02)00192-8 |
41 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J.A general energy balance for battery systems[J].Journal of the Electrochemical Society,1985,132(1):5-12. doi:10.1149/1.2113792 |
42 | PESARAN A A, BURCH S, KEYSER M. An approach for designing thermal management systems for electric and hybrid vehicle battery packs[R].Office of Scientific & Technical Information Technical Reports, 1999: 1-16. |
43 | 彭强. 电动汽车用锂离子动力电池热效应研究[D].吉林:吉林大学,2012. |
PENG Q. Study on thermal effects of lithium-ion power batteries for electric vehicles[D].Jilin: Jilin University, 2012. | |
44 | CHENG K W E, DIVAKAR B P, WU H,et al. Battery-management system (BMS) and SOC development for electrical vehicles[J].IEEE Transactions on Vehicular Technology,2011,60: 76-88. doi:10.1109/tvt.2010.2089647 |
[1] | Nan TU, Jiachen LIU, Jing XU, Jiabin FANG, Yanhua MA. Performance Analysis of Heat Storage and Release Process for a Shell-and-Tube Phase Change Heat Exchanger [J]. Power Generation Technology, 2024, 45(3): 508-516. |
[2] | Xue LIU, Guodong LI, Ruiying ZHANG, Yichen HOU, Lei CHEN, Lijun YANG. Research on Axial Flow Fan Models of Air Cooling Island in Power Plant [J]. Power Generation Technology, 2024, 45(3): 545-557. |
[3] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[4] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[5] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[6] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[7] | Jiahui ZHAO, Liting TIAN, Lin CHENG. Review on State Estimation and Remaining Useful Life Prediction Methods for Lithium-ion Battery [J]. Power Generation Technology, 2023, 44(1): 1-17. |
[8] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[9] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[10] | Ning WANG, Zhiqiang CHEN, Mingyi LIU, Peng ZHANG, Xi CAO, Zeyu LU, Haodong LEI, Chuanzhao CAO, Xiao YAN, Guopeng ZHOU. Health Status Assessment of Lithium-ion Battery Based on Fuzzy Comprehensive Evaluation [J]. Power Generation Technology, 2022, 43(5): 784-791. |
[11] | Shuaishuai YAN, Yang LU, Wenhui HOU, Kai LIU. Smart Separator Materials of Intrinsic Safe Lithium Battery for Large-scale Electric Energy Storge [J]. Power Generation Technology, 2022, 43(5): 792-800. |
[12] | Wenjun KONG, Yansen ZHANG, Xiaoping TANG, Weikuo ZHANG. Study on Heat Production Characteristics of Lithium-ion Batteries for Large Capacity Energy Storage [J]. Power Generation Technology, 2022, 43(5): 801-809. |
[13] | Zexu WANG, Kehan HE, Chen SUN, Kaixuan LI, Xing JU. Research on Battery Thermal Management of Pouch Cell Using a Phase Change Material-Based Thermal Switch [J]. Power Generation Technology, 2022, 43(5): 810-822. |
[14] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[15] | Chunxi DAI, Ping LIANG, Deyong CHE, Haiting LIU. Study on Flow Characteristics in Honeycomb Tube Wet Electrostatic Precipitator [J]. Power Generation Technology, 2022, 43(1): 155-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||