Power Generation Technology ›› 2025, Vol. 46 ›› Issue (5): 986-995.DOI: 10.12096/j.2096-4528.pgt.24034
• Power Generation and Environmental Protection • Previous Articles Next Articles
Jing CHEN1, Hui LIU2, Meng ZHU3, Can WANG3, Lei CHEN3, Jing ZHOU3, Kai XU3, Long JIANG3, Song HU3, Jun XIANG3
Received:2024-08-04
Revised:2024-11-02
Published:2025-10-31
Online:2025-10-23
Supported by:CLC Number:
Jing CHEN, Hui LIU, Meng ZHU, Can WANG, Lei CHEN, Jing ZHOU, Kai XU, Long JIANG, Song HU, Jun XIANG. Analysis of Influence of Flue Gas Recirculation on Thermodynamic Performance and Economic Efficiency of 125 MW Supercritical CO2 Coal-Fired Power Generation Unit[J]. Power Generation Technology, 2025, 46(5): 986-995.
| 循环参数 | 设计值 | 循环参数 | 设计值 | |
|---|---|---|---|---|
| MC入口温度/℃ | 32.00 | BC效率/% | 89.00 | |
| MC入口压力/MPa | 7.60 | BC分流比 | 0.347 | |
| MC出口压力/MPa | 26.00 | CW质量流量/(t/h) | 3 325.4 | |
| BC入口温度/℃ | 84.53 | RCW质量流量/(t/h) | 3 749.2 | |
| BC入口压力/MPa | 7.70 | BH质量流量/(t/h) | 423.8 | |
| BC出口压力/MPa | 25.90 | CW入口温度/℃ | 524.92 | |
| LTR入口温度(高温测)/℃ | 77.33 | CW入口压力/MPa | 25.80 | |
| LTR出口温度(高温测)/℃ | 201.60 | RH入口温度/℃ | 522.49 | |
| HTR和LTR夹点温度/℃ | 5.00 | RH入口压力/MPa | 14.05 | |
| 各部件压降(除锅炉外)/MPa | 0.10 | SH出口温度/℃ | 600.00 | |
| HPT效率/% | 94.00 | SH出口压力/MPa | 25.00 | |
| LPT效率/% | 94.00 | RH出口温度/℃ | 600.00 | |
| MC效率/% | 89.00 | RH出口压力/MPa | 13.45 |
Tab. 1 Design parameters of 125 MW S-CO2 cycle
| 循环参数 | 设计值 | 循环参数 | 设计值 | |
|---|---|---|---|---|
| MC入口温度/℃ | 32.00 | BC效率/% | 89.00 | |
| MC入口压力/MPa | 7.60 | BC分流比 | 0.347 | |
| MC出口压力/MPa | 26.00 | CW质量流量/(t/h) | 3 325.4 | |
| BC入口温度/℃ | 84.53 | RCW质量流量/(t/h) | 3 749.2 | |
| BC入口压力/MPa | 7.70 | BH质量流量/(t/h) | 423.8 | |
| BC出口压力/MPa | 25.90 | CW入口温度/℃ | 524.92 | |
| LTR入口温度(高温测)/℃ | 77.33 | CW入口压力/MPa | 25.80 | |
| LTR出口温度(高温测)/℃ | 201.60 | RH入口温度/℃ | 522.49 | |
| HTR和LTR夹点温度/℃ | 5.00 | RH入口压力/MPa | 14.05 | |
| 各部件压降(除锅炉外)/MPa | 0.10 | SH出口温度/℃ | 600.00 | |
| HPT效率/% | 94.00 | SH出口压力/MPa | 25.00 | |
| LPT效率/% | 94.00 | RH出口温度/℃ | 600.00 | |
| MC效率/% | 89.00 | RH出口压力/MPa | 13.45 |
| 类别 | 参数 | 数值 |
|---|---|---|
| 干燥无灰基挥发分质量分数Vdaf/% | 34.73 | |
| 工业分析 | 收到基水分质量分数Mar/% | 15.55 |
| 收到基灰分质量分数Aar/% | 8.80 | |
| 收到基碳质量分数Car/% | 61.70 | |
| 收到基氢质量分数Har/% | 3.67 | |
| 元素分析 | 收到基氧质量分数Oar/% | 8.56 |
| 收到基氮质量分数Nar/% | 1.12 | |
| 收到基硫质量分数Sar/% | 0.60 | |
| 性能指标 | 收到基低位发热量Qnet, ar/(kJ/kg) | 23 442 |
Tab. 2 Proximate and ultimate analysis of design coal
| 类别 | 参数 | 数值 |
|---|---|---|
| 干燥无灰基挥发分质量分数Vdaf/% | 34.73 | |
| 工业分析 | 收到基水分质量分数Mar/% | 15.55 |
| 收到基灰分质量分数Aar/% | 8.80 | |
| 收到基碳质量分数Car/% | 61.70 | |
| 收到基氢质量分数Har/% | 3.67 | |
| 元素分析 | 收到基氧质量分数Oar/% | 8.56 |
| 收到基氮质量分数Nar/% | 1.12 | |
| 收到基硫质量分数Sar/% | 0.60 | |
| 性能指标 | 收到基低位发热量Qnet, ar/(kJ/kg) | 23 442 |
| 参数 | 300 MW S-CO2锅炉 | ||
|---|---|---|---|
| 计算值 | 设计值 | 误差/% | |
| 屏底烟温 | 1 270.7 ℃ | — | — |
| 炉膛出口烟温 | 1 030.7 ℃ | 1 025.0 ℃ | 0.56 |
| 排烟温度 | 1 14.2 ℃ | 1 10.0 ℃ | 3.82 |
| 主蒸汽出口温度 | 601.0 ℃ | 602.0 ℃ | -0.17 |
| 主蒸汽出口压力 | 32.15 MPa | 32.00 MPa | 0.47 |
| 再热蒸汽出口温度 | 622.2 ℃ | 622.0 ℃ | 0.03 |
| 再热蒸汽出口压力 | 17.98 MPa | 17.80 MPa | 1.00 |
Tab. 3 Comparison between model calculation results and design values
| 参数 | 300 MW S-CO2锅炉 | ||
|---|---|---|---|
| 计算值 | 设计值 | 误差/% | |
| 屏底烟温 | 1 270.7 ℃ | — | — |
| 炉膛出口烟温 | 1 030.7 ℃ | 1 025.0 ℃ | 0.56 |
| 排烟温度 | 1 14.2 ℃ | 1 10.0 ℃ | 3.82 |
| 主蒸汽出口温度 | 601.0 ℃ | 602.0 ℃ | -0.17 |
| 主蒸汽出口压力 | 32.15 MPa | 32.00 MPa | 0.47 |
| 再热蒸汽出口温度 | 622.2 ℃ | 622.0 ℃ | 0.03 |
| 再热蒸汽出口压力 | 17.98 MPa | 17.80 MPa | 1.00 |
| 参数 | 数值 |
|---|---|
| 固定开支率 | 0.12 |
| 折扣利率 | 0.06 |
| 煤炭增值率 | 0.02 |
| CLOM上升率 | 0.02 |
| 容量因子 | 0.85 |
| 煤炭价格/(元/t) | 682 |
| 建造时长/a | 3 |
| 设备寿命/a | 30 |
Tab. 4 Preset parameters of economic evaluation
| 参数 | 数值 |
|---|---|
| 固定开支率 | 0.12 |
| 折扣利率 | 0.06 |
| 煤炭增值率 | 0.02 |
| CLOM上升率 | 0.02 |
| 容量因子 | 0.85 |
| 煤炭价格/(元/t) | 682 |
| 建造时长/a | 3 |
| 设备寿命/a | 30 |
| 参数 | 烟气再循环率 | |||
|---|---|---|---|---|
| 10% | 20% | 30% | 40% | |
| 发电功率/MW | 125 | 125 | 125 | 125 |
| 净功率/MW | 119.93 | 119.84 | 119.73 | 119.58 |
| 锅炉效率/% | 93.39 | 93.39 | 93.39 | 93.39 |
| 循环效率/% | 50.57 | 50.57 | 50.57 | 50.57 |
| 净效率/% | 45.31 | 45.27 | 45.23 | 45.17 |
| 煤耗量/(t⋅h-1) | 40.65 | 40.65 | 40.65 | 40.65 |
Tab. 5 Key performance parameters of S-CO2 power generation system
| 参数 | 烟气再循环率 | |||
|---|---|---|---|---|
| 10% | 20% | 30% | 40% | |
| 发电功率/MW | 125 | 125 | 125 | 125 |
| 净功率/MW | 119.93 | 119.84 | 119.73 | 119.58 |
| 锅炉效率/% | 93.39 | 93.39 | 93.39 | 93.39 |
| 循环效率/% | 50.57 | 50.57 | 50.57 | 50.57 |
| 净效率/% | 45.31 | 45.27 | 45.23 | 45.17 |
| 煤耗量/(t⋅h-1) | 40.65 | 40.65 | 40.65 | 40.65 |
| 成本项 | 烟气再循环率 | |||
|---|---|---|---|---|
| 10% | 20% | 30% | 40% | |
| CLCC | 0.121 8 | 0.122 9 | 0.123 8 | 0.126 9 |
| CLOM | 0.063 0 | 0.063 0 | 0.063 0 | 0.063 0 |
| CLFP | 0.293 2 | 0.293 4 | 0.293 7 | 0.294 0 |
| CXC | 0.129 4 | 0.129 5 | 0.129 6 | 0.129 8 |
| CLCOE | 0.607 4 | 0.608 8 | 0.610 1 | 0.613 7 |
Tab. 6 Levelized cost of electricity of S-CO2 unit under different flue gas recirculation rates
| 成本项 | 烟气再循环率 | |||
|---|---|---|---|---|
| 10% | 20% | 30% | 40% | |
| CLCC | 0.121 8 | 0.122 9 | 0.123 8 | 0.126 9 |
| CLOM | 0.063 0 | 0.063 0 | 0.063 0 | 0.063 0 |
| CLFP | 0.293 2 | 0.293 4 | 0.293 7 | 0.294 0 |
| CXC | 0.129 4 | 0.129 5 | 0.129 6 | 0.129 8 |
| CLCOE | 0.607 4 | 0.608 8 | 0.610 1 | 0.613 7 |
| [1] | STEPANEK J, ENTLER S, SYBLIK J,et al .Parametric study of S-CO2 cycles for the DEMO fusion reactor[J].Fusion Engineering and Design,2020,160:111992. doi:10.1016/j.fusengdes.2020.111992 |
| [2] | 郑开云 .超临界二氧化碳循环发电技术应用[J].发电技术,2020,41(4):399-406. doi:10.12096/j.2096-4528.pgt.19057 |
| ZHENG K Y .Application of supercritical carbon dioxide cycle power generation technology[J].Power Generation Technology,2020,41(4):399-406. doi:10.12096/j.2096-4528.pgt.19057 | |
| [3] | 万明元,任鑫,王渡,等 .100 MW级联式S-CO2循环动态特性研究[J].中国电力,2024,57(12):169-177. |
| WAN M Y, REN X, WANG D,et al .Study of dynamic characteristics of 100 MW cascade S-CO2 cycle[J].Electric Power,2024,57(12):169-177. | |
| [4] | 张仲勇,朱兵国 .非纯净超临界CO2再压缩布雷顿循环的热力学分析[J].电力科技与环保,2023,39(6):497-504. |
| ZHANG Z Y, ZHU B G .Thermodynamic analysis of Brayton cycle of recompression of impure supercritical CO2 [J].Electric Power Technology and Environmental Protection,2023,39(6):497-504. | |
| [5] | 唐鑫,钱奕然,方华伟,等 .超临界二氧化碳布雷顿循环控制策略研究综述[J].发电技术,2023,44(4):492-501. doi:10.12096/j.2096-4528.pgt.22079 |
| TANG X, QIAN Y R, FANG H W,et al .A review of control strategies for supercritical carbon dioxide brayton cycle[J].Power Generation Technology,2023,44(4):492-501. doi:10.12096/j.2096-4528.pgt.22079 | |
| [6] | SCHMITT J, WILLIS R, AMOS D,et al .Study of a supercritical CO2 turbine with TIT of 1 350 K for brayton cycle with 100 MW class output:aerodynamic analysis of stage 1 vane[C]//ASME Turbo Expo 2014:Turbine Technical Conference and Exposition.Düsseldorf,Germany:ASME,2014:1-9. doi:10.1115/gt2014-27214 |
| [7] | LE MOULLEC Y .Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J].Energy,2013,49:32-46. doi:10.1016/j.energy.2012.10.022 |
| [8] | 郭子岗,张海龙,梁舒婷 .超临界CO2锅炉研究综述[J].电力科技与环保,2023,39(6):490-496. |
| GUO Z G, ZHANG H L, LIANG S T .Review of the studies on supercritical CO2 boilers[J].Electric Power Technology and Environmental Protection,2023,39(6):490-496. | |
| [9] | 尹秋钰,李德波,方立军,等 .1 000 MW超临界CO2锅炉热力计算与变工况特性研究[J].广东电力,2024,37(11):120-126. |
| YIN Q Y, LI D B, FANG L J,et al .Thermodynamic calculation and research on 1 000 MW supercritical CO2 boiler under variable conditions[J].Guangdong Electric Power,2024,37(11):120-126. | |
| [10] | ZHU M, ZHOU J, CHEN L,et al .Economic analysis and cost modeling of supercritical CO2 coal-fired boiler based on global optimization[J].Energy,2022,239:122311. doi:10.1016/j.energy.2021.122311 |
| [11] | 高炜,李红智,张一帆,等 .梯级利用烟气余热的超临界CO2与ORC联合循环[J].电力科技与环保,2023,39(6):505-513. |
| GAO W, LI H Z, ZHANG Y F,et al .Cascade utilization of gas turbine waste heat with supercritical CO2 and ORC combined cycle[J].Electric Power Technology and Environmental Protection,2023,39(6):505-513. | |
| [12] | ZHOU J, XIANG J, SU S,et al .Key issues and practical design for cooling wall of supercritical carbon dioxide coal-fired boiler[J].Energy,2019,186:115834. doi:10.1016/j.energy.2019.07.164 |
| [13] | LI H Z, ZHANG Y F, YAO M Y,et al .Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop[J].Energy,2019,174:792-804. doi:10.1016/j.energy.2019.02.178 |
| [14] | 李江浩,刘洋,闫博康,等 .660 MW超超临界二次再热锅炉烟气再循环对锅炉运行参数影响[J].电力科技与环保,2019,35(6):37-40. |
| LI J H, LIU Y, YAN B K,et al .The effect of FGR on 600 MW double reheat boiler parameters[J].Electric Power Technology and Environmental Protection,2019,35(6):37-40. | |
| [15] | 袁峰 .烟气再循环对超临界二氧化碳锅炉换热性能影响分析[D].北京:华北电力大学,2022. |
| YUAN F .Analysis of wall temperature characteristics of supercritical carbon dioxide coal-fired boiler with flue gas circulation[D].Beijing:North China Electric Power University,2022. | |
| [16] | ZHOU J, ZHU M, XU K,et al .Key issues and innovative double-tangential circular boiler configurations for the 1 000 MW coal-fired supercritical carbon dioxide power plant[J].Energy,2020,199:117474. doi:10.1016/j.energy.2020.117474 |
| [17] | FAN Y H, YANG D L, TANG G H,et al .Design of S-CO2 coal-fired power system based on the multiscale analysis platform[J].Energy,2022,240:122482. doi:10.1016/j.energy.2021.122482 |
| [18] | ZHOU J, ZHU M, TANG Y F,et al .Innovative system configuration analysis and design principle study for different capacity supercritical carbon dioxide coal-fired power plant[J].Applied Thermal Engineering,2020,174:115298. doi:10.1016/j.applthermaleng.2020.115298 |
| [19] | ZHOU J, ZHU M, SU S,et al .Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1 000 MW supercritical CO2 coal-fired boiler[J].Energy,2020,212:118735. doi:10.1016/j.energy.2020.118735 |
| [20] | 陈军华,章文杰,徐鹏志,等 .电厂锅炉优化改造试验分析[J].发电技术,2019,40(1):61-65. |
| CHEN J H, ZHANG W J, XU P Z,et al .Experimental and analysis on optimization of a boiler in power plant[J].Power Generation Technology,2019,40(1):61-65. | |
| [21] | BAI W G, ZHANG Y F, YANG Y,et al .300 MW boiler design study for coal-fired supercritical CO2 Brayton cycle[J].Applied Thermal Engineering,2018,135:66-73. doi:10.1016/j.applthermaleng.2018.01.110 |
| [22] | 李靖,徐天奇,李琰,等 .基于多市场耦合的新能源综合发电项目的盈利能力研究[J].电力系统保护与控制,2024,52(6):65-76. |
| LI J, XU T Q, LI Y,et al .Profitability study of multi-market coupled integrated renewable energy generation projects[J].Power System Protection and Control,2024,52(6):65-76. | |
| [23] | 赵赫,隋朝霞 .基于平准化度电成本的风光火储一体化项目成本分析及比较[J].广东电力,2023,36(10):39-46. |
| ZHAO H, SUI Z X .Cost analysis and comparison of wind-photovoltaic-thermal-storage integration project based on LCOE[J].Guangdong Electric Power,2023,36(10):39-46. | |
| [24] | ROTH I F, AMBS L L .Incorporating externalities into a full cost approach to electric power generation life-cycle costing[J].Energy,2004,29(12/13/14/15):2125-2144. doi:10.1016/j.energy.2004.03.016 |
| [25] | 朱萌,周敬,陈磊,等 .660 MW超临界二氧化碳燃煤机组锅炉设计及经济性分析[J].热力发电,2020,49(10):136-143. |
| ZHU M, ZHOU J, CHEN L,et al .Boiler design and economic analysis for 660 MW supercritical carbon dioxide coal-fired unit[J].Thermal Power Generation,2020,49(10):136-143. | |
| [26] | WANG L G, YANG Y P, DONG C Q,et al .Exergoeconomic evaluation of a modern ultra-supercritical power plant[J].Energies,2012,5(9):3381-3397. doi:10.3390/en5093381 |
| [27] | DOSTÁL V .A supercritical carbon dioxide cycle for next generation nuclear reactors[D].Cambridge,MA,USA:Massachusetts Institute of Technology,2004. |
| [28] | 电力规划设计总院 .火电工程限额设计参考造价指标(2017年水平)[M].北京:中国电力出版社,2018:71-137. |
| General Institute of Electric Power Planning and Design .Thermal power project quota design reference cost index (level 2017)[M].Beijing:China Electric Power Press,2018:71-137. | |
| [29] | JAMES III R E, ZOELLE A, KEAIRNS D,et al .Cost and performance baseline for fossil energy plants volume 1:bituminous coal and natural gas to electricity[M].Pittsburg:NETL,2019:420-469. doi:10.2172/1569246 |
| [30] | THEIS J .Quality guidelines for energy systems studies:cost estimation methodology for NETL assessments of power plant performance[M].Pittsburg:NETL,2019:9-23. doi:10.2172/1567185 |
| [1] | Hongjian WANG, Yankai HUANG, Xin YU, Dunxi YU. Experimental Study on Wide-Load Low-NO x Combustion Retrofit for Circulating Fluidized Bed Boiler Burning High-Alkali Coal [J]. Power Generation Technology, 2025, 46(5): 1005-1013. |
| [2] | Jianjun LI, Manxia SHANG, Hailong DONG, Bingming LI, Zhong HUANG. Application and Optimization Research on Combined Denitrification Technology in 350 MW Supercritical Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2025, 46(5): 1014-1021. |
| [3] | Yiwei XU, Yan HONG, Xiaopeng ZHAO, Bingwei SUI. Analysis of Influence of Coal-Ammonia Co-firing on the Heat Transfer Characteristics of Heating Surfaces in Coal-Fired Boiler [J]. Power Generation Technology, 2025, 46(5): 1022-1031. |
| [4] | Cheng LUO, Lei WANG, Yang LI, Qingming MENG, Guibin ZHANG, Yuanbin ZHAO. Effects of Variable-Flow Water Distribution on Cooling Performance of Wet Cooling Towers and Its Optimization [J]. Power Generation Technology, 2025, 46(5): 1041-1049. |
| [5] | Bo ZOU, Jiandi REN, Daoming XU, Lisheng DENG, Lida LIAO, Junbing XIAO. Recent Developments on the Application of Chloride Molten Salt Heat Storage Technology to New Energy Power Generation [J]. Power Generation Technology, 2025, 46(5): 872-884. |
| [6] | Ning MA, Pan ZHAO, Aijie LIU, Wenpan XU, Jiangfeng WANG. Comparison of Characteristics and Exergoeconomic Between Hydrogen and Natural Gas-Fueled Compressed Air Energy Storage Systems [J]. Power Generation Technology, 2025, 46(5): 885-896. |
| [7] | Wenjing WANG, Yixuan HAN, Jibin LI, Xiaoxu SHEN, Zhaoyi HUO, Lianghua FENG. Multi-Objective Optimization Analysis of Gas-Steam Combined Cycle Power Generation Systems [J]. Power Generation Technology, 2025, 46(4): 839-848. |
| [8] | Shuaining ZHANG, Mingming GAO, Yongquan WANG, Weihua WANG, Haoyang YU, Zhong HUANG. Integrated Modeling Study of Desulfurization in Circulating Fluidized Bed Boilers Under Wide Load Conditions [J]. Power Generation Technology, 2025, 46(4): 849-856. |
| [9] | Yicai WANG, Xin YU, Dunxi YU. Research Progress on Utilization of Arundo Donax L. Combustion [J]. Power Generation Technology, 2025, 46(3): 570-578. |
| [10] | Zhiyong ZHANG, Linggang KONG, Duojin FAN, Xiaojuan LU. Modeling Simulation and Experimental Verification of Focal Length Optimization in Linear Fresnel Collector [J]. Power Generation Technology, 2025, 46(3): 590-599. |
| [11] | Chizhong WANG, Xin GAO, Heng CHEN, Guoqiang ZHANG, Kai ZHANG. Investment Decision and Economic Analysis of Distributed Photovoltaic Power Stations [J]. Power Generation Technology, 2025, 46(3): 607-616. |
| [12] | Guolin ZHANG, Zhezhao ZENG, Yuqi TANG. Research on Auto-Coupling PID Control Method of Firing Rate to Feed Water Ratio System of Supercritical Unit [J]. Power Generation Technology, 2025, 46(2): 344-352. |
| [13] | Lifeng ZHANG, Xianghu DONG. Reconstruction of Temperature Distribution in Acoustic Tomography Based on Robust Regularized Extreme Learning Machine [J]. Power Generation Technology, 2025, 46(2): 361-369. |
| [14] | Kai LI, Pingheng ZHANG, Zhihao MENG, Yunning CAO, Yao XU, Li LIU, Lianming LI. Numerical Simulation of Fly Ash Deposition Characteristics and Flow Field Optimization for SCR External Flue [J]. Power Generation Technology, 2025, 46(1): 145-153. |
| [15] | Haibao ZHAO, Yuzhong HE, Hanxiao LIU, Jiang LIANG. Improvement and Engineering Application on Pulse Power Supply of Electrostatic Precipitator in Coal-Fired Power Plant [J]. Power Generation Technology, 2025, 46(1): 154-160. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||