Power Generation Technology ›› 2025, Vol. 46 ›› Issue (5): 1005-1013.DOI: 10.12096/j.2096-4528.pgt.25027
• Power Generation and Environmental Protection •
Hongjian WANG1, Yankai HUANG2, Xin YU2, Dunxi YU2
Received:2025-01-09
Revised:2025-03-10
Published:2025-10-31
Online:2025-10-23
Supported by:CLC Number:
Hongjian WANG, Yankai HUANG, Xin YU, Dunxi YU. Experimental Study on Wide-Load Low-NO x Combustion Retrofit for Circulating Fluidized Bed Boiler Burning High-Alkali Coal[J]. Power Generation Technology, 2025, 46(5): 1005-1013.
| 项目 | 参数 | 数值 |
|---|---|---|
| 元素分析 | 收到基碳质量分数Car/% | 48.43 |
| 收到基氢质量分数Har/% | 3.30 | |
| 收到基氧质量分数Oar/% | 9.70 | |
| 收到基氮质量分数Nar/% | 0.31 | |
| 收到基全硫质量分数St,ar/% | 0.47 | |
| 工业分析 | 收到基灰分质量分数Aar/% | 17.63 |
| 全水分质量分数Mar/% | 24.60 | |
| 干燥无灰基挥发分质量分数Vdaf/% | 32.45 | |
| 发热量 | 收到基低位发热量Qnet,ar/(kJ/kg) | 15 178.92 |
| 灰熔点 | 灰变形温度/℃ | 1 150 |
| 灰软化温度/℃ | 1 159 | |
| 灰流动温度/℃ | 1 172 | |
| 灰成分分析 | w(SiO2)/% | 44.80 |
| w(Al2O3)/% | 8.20 | |
| w(Fe2O3)/% | 5.60 | |
| w(CaO)/% | 9.80 | |
| w(MgO)/% | 3.80 | |
| w(Na2O)/% | 2.97 | |
| w(K2O)/% | 1.40 | |
| w(TiO2)/% | 0.10 |
Tab. 1 Coal quality parameters and ash characteristics
| 项目 | 参数 | 数值 |
|---|---|---|
| 元素分析 | 收到基碳质量分数Car/% | 48.43 |
| 收到基氢质量分数Har/% | 3.30 | |
| 收到基氧质量分数Oar/% | 9.70 | |
| 收到基氮质量分数Nar/% | 0.31 | |
| 收到基全硫质量分数St,ar/% | 0.47 | |
| 工业分析 | 收到基灰分质量分数Aar/% | 17.63 |
| 全水分质量分数Mar/% | 24.60 | |
| 干燥无灰基挥发分质量分数Vdaf/% | 32.45 | |
| 发热量 | 收到基低位发热量Qnet,ar/(kJ/kg) | 15 178.92 |
| 灰熔点 | 灰变形温度/℃ | 1 150 |
| 灰软化温度/℃ | 1 159 | |
| 灰流动温度/℃ | 1 172 | |
| 灰成分分析 | w(SiO2)/% | 44.80 |
| w(Al2O3)/% | 8.20 | |
| w(Fe2O3)/% | 5.60 | |
| w(CaO)/% | 9.80 | |
| w(MgO)/% | 3.80 | |
| w(Na2O)/% | 2.97 | |
| w(K2O)/% | 1.40 | |
| w(TiO2)/% | 0.10 |
| 参数 | 数值 |
|---|---|
| 水冷屏增加面积/m2 | 235 |
| 屏式过热器增加面积/m2 | 112 |
| 分离器缩口减小宽度/mm | 204 |
| 上二次风口增加标高/mm | 2 000 |
| 下二次风口增加标高/mm | 1 000 |
Tab. 2 Key parameters for retrofit
| 参数 | 数值 |
|---|---|
| 水冷屏增加面积/m2 | 235 |
| 屏式过热器增加面积/m2 | 112 |
| 分离器缩口减小宽度/mm | 204 |
| 上二次风口增加标高/mm | 2 000 |
| 下二次风口增加标高/mm | 1 000 |
| [1] | 杨忠灿,刘家利,何红光 .新疆准东煤特性研究及其锅炉选型[J].热力发电,2010,39(8):38-40. |
| YANG Z C, LIU J L, HE H G .Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J].Thermal Power Generation,2010,39(8):38-40. | |
| [2] | 姜孝国,江来 .关于准东煤循环流化床设计问题的探讨[J].电站系统工程,2017,33(1):45-46. |
| JIANG X G, JIANG L .The discussion about Zhundong coal fired CFB boiler[J].Power System Engineering,2017,33(1):45-46. | |
| [3] | 王洪健,王海洋,孔皓,等 .135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J].发电技术,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 |
| WANG H J, WANG H Y, KONG H,et al .Retrofitting strategy and operating technology of pure burning Zhundong coal in a 135 MW circulating fluidized bed boiler[J].Power Generation Technology,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 | |
| [4] | 吕俊复,岳光溪,张建胜,等 .循环流化床锅炉运行与检修[M].2版.北京:中国水利水电出版社,2005. |
| LÜ J F, YUE G X, ZHANG J S,et al .Operation and maintenance of circulating fluidized bed boiler[M].2nd ed.Beijing:China Water & Power Press,2005. | |
| [5] | 卢啸风,李建波,刘卓,等 .燃准东煤电站锅炉沾污结渣特性及防治措施研究进展[J].中国电机工程学报,2024,44(18):7247-7264. |
| LU X F, LI J B, LIU Z,et al .Research progress on the characteristics and countermeasures of ash slagging and fouling in boilers burning Zhundong coal[J].Proceedings of the CSEE,2024,44(18):7247-7264. | |
| [6] | 龙潇飞,李建波,郭子鹏,等 .添加石灰石对准东煤CFB燃烧过程床料团聚和受热面积灰的影响[J].中国电机工程学报,2024,44(14):5631-5642. |
| LONG X F, LI J B, GUO Z P,et al .Effect of limestone addition on bed particle agglomeration and ash deposition on heat transfer surface during Zhundong coal combustion in a circulating fluidized bed[J].Proceedings of the CSEE,2024,44(14):5631-5642. | |
| [7] | 刘卓,李建波,龙潇飞,等 .循环流化床燃烧高钠准东煤的床料颗粒聚团特性[J].中国电机工程学报,2022,42(6):2248-2258. |
| LIU Z, LI J B, LONG X F,et al .Bed particle agglomeration in circulating fluidized bed burning high-sodium Zhundong coal[J].Proceedings of the CSEE,2022,42(6):2248-2258. | |
| [8] | 王超,宋国良,吕清刚 .循环流化床超低NO x 与SO2排放技术研究进展[J].洁净煤技术,2021,27(4):17-25. |
| WANG C, SONG G L, LYU Q G .Research progress on ultra-low NO x and SO2 emission control technology for CFB boilers[J].Clean Coal Technology,2021,27(4):17-25. | |
| [9] | 彭建升,王家兴,程昌业,等 .循环流化床锅炉燃用准东煤NO x 超低排放技术研究[J].热能动力工程,2020,35(10):65-71. |
| PENG J S, WANG J X, CHENG C Y,et al .Study on NO x ultra-low emission technology of burning Zhundong coal in CFB boiler[J].Journal of Engineering for Thermal Energy and Power,2020,35(10):65-71. | |
| [10] | 李军,张缦,刘青,等 .循环流化床锅炉超低氮氧化物排放理论与实践[J].洁净煤技术,2020,26(3):139-145. |
| LI J, ZHANG M, LIU Q,et al .Theory and practice of ultra-low NO x emission in circulating fluidized bed boilers[J].Clean Coal Technology,2020,26(3):139-145. | |
| [11] | 牛斌,李丽锋,孙倩,等 .超临界循环流化床机组全负荷段深度调峰方法研究[J].发电技术,2021,42(2):273-279. doi:10.12096/j.2096-4528.pgt.20024 |
| NIU B, LI L F, SUN Q,et al .Research on the method of depth peaking at full load of supercritical circulating fluidized bed unit[J].Power Generation Technology,2021,42(2):273-279. doi:10.12096/j.2096-4528.pgt.20024 | |
| [12] | 谢民,陈佳丽,吴燕雄 .300 MW级循环流化床机组调峰能力改造分析[J].特种设备安全技术,2023(6):13-15. |
| XIE M, CHEN J L, WU Y X .Analysis on the transformation of peak shaving capacity of 300 MW circulating fluidized bed unit[J].Safety Technology of Special Equipment,2023(6):13-15. | |
| [13] | 张思海,李超然,万广亮,等 .330 MW循环流化床锅炉深度调峰技术[J].发电技术,2024,45(2):199-206. |
| ZHANG S H, LI C R, WAN G L,et al .Deep peak shaving technology for 330 MW circulating fluidized bed boiler[J].Power Generation Technology,2024,45(2):199-206. | |
| [14] | 代华松,浦绍旭,柴国旭,等 .350 MW超临界流化床机组深度调峰研究与应用[J].发电技术,2024,45(3):401-411. |
| DAI H S, PU S X, CHAI G X,et al .Research and application of deep peak shaving of 350 MW supercritical fluidized bed unit[J].Power Generation Technology,2024,45(3):401-411. | |
| [15] | 张文祥,晏海能,孙志军,等 .超临界660 MW循环流化床锅炉NO x 排放控制困难分析及处理[J].热力发电,2024,53(5):109-114. |
| ZHANG W X, YAN H N, SUN Z J,et al .Analysis and treatment of difficulties in NO x emission control of a supercritical 660 MW circulating fluidized bed boiler[J].Thermal Power Generation,2024,53(5):109-114. | |
| [16] | 李影平,辛胜伟,王凤君 .660 MW超超临界循环流化床锅炉超低NO x 排放研究[J].洁净煤技术,2019,25(5):86-92. |
| LI Y P, XIN S W, WANG F J .Study on ultra-low NO x emission technology of 660 MW ultra-supercritical circulating fluidized bed boiler[J].Clean Coal Technology,2019,25(5):86-92. | |
| [17] | 岳光溪,张扬,张建春,等 .面向双碳目标的多元燃料循环流化床燃烧技术展望[J].中国电机工程学报,2024,44(17):6844-6855. |
| YUE G X, ZHANG Y, ZHANG J C,et al .Outlook for multiple fuel circulating fluidized bed combustion technologies for the dual carbon goals[J].Proceedings of the CSEE,2024,44(17):6844-6855. | |
| [18] | 刘桂松 .试论循环流化床锅炉分离器中心筒改造对锅炉性能的影响[J].中国设备工程,2022(4):124-125. |
| LIU G S .Discussion on the influence of the transformation of the separator center tube of circulating fluidized bed boiler on the boiler performance[J].China Plant Engineering,2022(4):124-125. | |
| [19] | 姜恒,谢玉婷,刘海玉,等 .300 MW CFB锅炉旋风分离器改造数值模拟研究[J].电力科技与环保,2024,40(1):87-94. |
| JIANG H, XIE Y T, LIU H Y,et al .Numerical simulation study on the enhancement of cyclone separator in CFB boilers[J].Electric Power Technology and Environmental Protection,2024,40(1):87-94. | |
| [20] | 张文杰 .旋风分离器在循环流化床锅炉上的应用及优化[J].锅炉技术,2019,50(3):36-39. |
| ZHANG W J .The application and optimize of the cyclone in CFB boiler[J].Boiler Technology,2019,50(3):36-39. | |
| [21] | 张喜来,王志超,周广钦,等 .电站锅炉高碱煤燃用技术发展现状及展望[J].热力发电,2023,52(7):133-141. |
| ZHANG X L, WANG Z C, ZHOU G Q,et al .Present situation and prospect of high alkali coal combustion technology in power plant boiler[J].Thermal Power Generation,2023,52(7):133-141. | |
| [22] | 郭佳明,张光学,池作和,等 .75 t/h循环流化床锅炉烟气再循环改造及试验研究[J].热能动力工程,2017,32(11):73-77. |
| GUO J M, ZHANG G X, CHI Z H,et al .Flue gas recirculation retrofit and experimental study for 75 t/h circulating fluidized bed boiler[J].Journal of Engineering for Thermal Energy and Power,2017,32(11):73-77. | |
| [23] | 吴勇俊,邵罗江,徐崇蛟 .浅谈循环流化床锅炉烟气再循环系统的运行[J].工业锅炉,2024(1):49-52. |
| WU Y J, SHAO L J, XU C J .Operation of flue gas recirculation system in CFB boilers[J].Industrial Boilers,2024(1):49-52. |
| [1] | Shuaining ZHANG, Mingming GAO, Yongquan WANG, Weihua WANG, Haoyang YU, Zhong HUANG. Integrated Modeling Study of Desulfurization in Circulating Fluidized Bed Boilers Under Wide Load Conditions [J]. Power Generation Technology, 2025, 46(4): 849-856. |
| [2] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
| [3] | Xiaohe XIONG, Falin CHEN, Renhui RUAN, Houzhang TAN, Yansen LI. Experiment on Multi-Component Synchronous Test of Reducing Atmosphere Adjacent to Water Wall of High Temperature Corrosion Boiler [J]. Power Generation Technology, 2023, 44(6): 800-808. |
| [4] | Shengli LIU, Haijun ZHANG, Jian CHENG, Yuxiu ZHONG, Jun XU, Long JIANG, Yi WANG, Sheng SU, Song HU, Jun XIANG. Research on Slagging and High Temperature Corrosion Prevention and Control of a 1 000 MW Ultra Supercritical Double Tangentially Fired Boiler [J]. Power Generation Technology, 2023, 44(2): 171-182. |
| [5] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
| [6] | Yousen ZHANG,Jiang FAN,Tao DING,Weixiong CHEN,Shuran ZHAO,Miaomiao LIU. Influence of Steam Ejector on Low-temperature Multi-effect Distillation System Under Wide Load Operation of Power Plant [J]. Power Generation Technology, 2020, 41(4): 369-377. |
| [7] | Haiwei YAN,Yazhao WANG,Jingdong GUO,Ke WANG,Dongmei LIAO. Cause Analysis and Control Countermeasures of Slurry Overflow in Desulfurization Absorber Tower Wastewater Pit [J]. Power Generation Technology, 2019, 40(2): 141-147. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||