Power Generation Technology ›› 2025, Vol. 46 ›› Issue (4): 849-856.DOI: 10.12096/j.2096-4528.pgt.23136
• Power Generation and Environmental Protection • Previous Articles
Shuaining ZHANG1, Mingming GAO1, Yongquan WANG1, Weihua WANG1, Haoyang YU1, Zhong HUANG2
Received:
2024-05-28
Revised:
2024-09-01
Published:
2025-08-31
Online:
2025-08-21
Contact:
Mingming GAO
Supported by:
CLC Number:
Shuaining ZHANG, Mingming GAO, Yongquan WANG, Weihua WANG, Haoyang YU, Zhong HUANG. Integrated Modeling Study of Desulfurization in Circulating Fluidized Bed Boilers Under Wide Load Conditions[J]. Power Generation Technology, 2025, 46(4): 849-856.
参数 | Car | Har | Oar | Nar | Sar | Aar | Mar | Qnet.ar | Vdaf |
---|---|---|---|---|---|---|---|---|---|
数值 | 48.65% | 2.92% | 8.25% | 0.57% | 2.19% | 13.62% | 23.8% | 17.73 MJ/kg | 41.11% |
Tab. 1 Analysis of coal quality
参数 | Car | Har | Oar | Nar | Sar | Aar | Mar | Qnet.ar | Vdaf |
---|---|---|---|---|---|---|---|---|---|
数值 | 48.65% | 2.92% | 8.25% | 0.57% | 2.19% | 13.62% | 23.8% | 17.73 MJ/kg | 41.11% |
参数 | 烧失量 | W(CaO) | w(MgO) | w(Fe2O3) | w(SiO2) | w(Al2O3) | w(K2O) | w(SO3) | w(Na2O) |
---|---|---|---|---|---|---|---|---|---|
数值/% | 43.20 | 42.05 | 9.24 | 0.42 | 3.86 | 0.40 | 0.07 | 0.01 | 0.006 |
Tab. 2 Analysis of limestone composition
参数 | 烧失量 | W(CaO) | w(MgO) | w(Fe2O3) | w(SiO2) | w(Al2O3) | w(K2O) | w(SO3) | w(Na2O) |
---|---|---|---|---|---|---|---|---|---|
数值/% | 43.20 | 42.05 | 9.24 | 0.42 | 3.86 | 0.40 | 0.07 | 0.01 | 0.006 |
误差指标 | 原烟气SO2排放浓度模型 | 净烟气SO2排放浓度模型 |
---|---|---|
MAE/(mg/m3) | 178.75 | 2.89 |
RMSE/(mg/m3) | 229.45 | 4.04 |
MAPE/% | 9.35 | 25.86 |
Tab. 3 Summary of model errors under steady-state conditions
误差指标 | 原烟气SO2排放浓度模型 | 净烟气SO2排放浓度模型 |
---|---|---|
MAE/(mg/m3) | 178.75 | 2.89 |
RMSE/(mg/m3) | 229.45 | 4.04 |
MAPE/% | 9.35 | 25.86 |
[1] | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
[2] | 王志轩,张晶杰,董博,等 .“双碳”目标下燃煤电厂灵活性改造及政策建议[J].电力科技与环保,2024,40(3):213-220. |
WANG Z X, ZHANG J J, DONG B,et al .Research on technology and policy of flexibility renovation for coal-fired power plants under carbon peaking and carbon neutrality goal[J].Electric Power Technology and Environmental Protection,2024,40(3):213-220. | |
[3] | 王放放,杨鹏威,赵光金,等 .新型电力系统下火电机组灵活性运行技术发展及挑战[J].发电技术,2024,45(2):189-198. |
WANG F F, YANG P W, ZHAO G J,et al .Development and challenge of flexible operation technology of thermal power units under new power system[J].Power Generation Technology,2024,45(2):189-198. | |
[4] | 朱法华,徐静馨,王圣,等 .中国燃煤电厂大气污染物治理历程及展望[J].电力科技与环保,2023,39(5):371-384. |
ZHU F H, XU J X, WANG S,et al .Processes and prospects of air pollutant control in coal-fired power plants in China[J].Electric Power Technology and Environmental Protection,2023,39(5):371-384. | |
[5] | 李璐,张泽端,毕贵红,等 .“双碳”目标下基于系统动力学的发电行业碳减排政策研究[J].电力系统保护与控制,2024,52(12):69-81. |
LI L, ZHANG Z D, BI G H,et al .Carbon emission reduction policy in the power generation sector based on system dynamics with “dual carbon” targets[J].Power System Protection and Control,2024,52(12):69-81. | |
[6] | 刘天蔚,边晓燕,吴珊,等 .电力系统碳排放核算综述与展望[J].电力系统保护与控制,2024,52(4):176-187. |
LIU T W, BIAN X Y, WU S,et al .Overview and prospect of carbon emission accounting in electric power systems[J].Power System Protection and Control,2024,52(4):176-187. | |
[7] | 曲立涛,齐晓辉,王德鑫,等 .基于CEMS数据的超低排放燃煤机组大气污染物排放特性分析[J].中国电力,2023,56(2):171-178. doi:10.11930/j.issn.1004-9649.202203075 |
QU L T, QI X H, WANG D X,et al .Analysis of air pollutant emission characteristics of ultra-low emission coal-fired units based on CEMS data[J].Electric Power,2023,56(2):171-178. doi:10.11930/j.issn.1004-9649.202203075 | |
[8] | 国务院新闻办公室 .《新时代的中国能源发展》白皮书[EB/OL].(2020-12-21)[2023-10-13].https∶//. |
The State Council Information Office of the People’s Republic of China .White paper on energy development in China in the new era[EB/OL].(2020-12-21)[2023-10-13].https∶//. | |
[9] | 中华人民共和国生态环境部,国家发展和改革委员会,国家能源局 .关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知[EB/OL].(2015-12-11)[2023-09-25].https∶//. |
Ministry of Ecology and Environment of the People’s Republic of China,National Development and Reform Commission,National Energy Administration .Notice on issuing the work plan for fully implementing ultra low emission and energy conservation renovation of coal-fired power plants[EB/OL].(2015-12-11)[2023-09-25].https∶//. | |
[10] | 王洪健,王海洋,孔皓,等 .135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J].发电技术,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 |
WANG H J, WANG H Y, KONG H,et al .Retrofitting strategy and operating technology of pure burning Zhundong coal in a 135 MW circulating fluidized bed boiler[J].Power Generation Technology,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 | |
[11] | YUE G, CAI R, LU J,et al .From a CFB reactor to a CFB boiler:the review of R&D progress of CFB coal combustion technology in China[J].Powder Technology,2017,316:18-28. doi:10.1016/j.powtec.2016.10.062 |
[12] | LÜ J, YANG H, LING W,et al .Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler[J].Frontiers in Energy,2019,13(1):114-119. doi:10.1007/s11708-017-0512-4 |
[13] | CAI R, ZHANG H, ZHANG M,et al .Development and application of the design principle of fluidization state specification in CFB coal combustion[J].Fuel Processing Technology,2018,174:41-52. doi:10.1016/j.fuproc.2018.02.009 |
[14] | 黄中,杨娟,车得福 .大容量循环流化床锅炉技术发展应用现状[J].热力发电,2019,48(6):1-8. |
HUANG Z, YANG J, CHE D F .Application and development status of large-scale CFB boilers[J].Thermal Power Generation,2019,48(6):1-8. | |
[15] | 孙献斌,戚峰,辛以振,等 .330 MW循环流化床锅炉燃烧调整试验研究[J].发电技术,2019,40(3):281-285. |
SUN X B, QI F, XIN Y Z,et al .Test study on combustion adjustment of 330 MW circulating fluidized bed boiler[J].Power Generation Technology,2019,40(3):281-285. | |
[16] | 范海东 .燃煤机组超低排放智能调控系统研究及工业验证[D].杭州:浙江大学,2022. |
FAN H D .Research and industrial verification of ultra-low emission intelligent control system for coal-fired units[D].Hangzhou:Zhejiang University,2022. | |
[17] | 刘东旭,张潇元,马青,等 .燃煤机组SO3生成与控制技术路线分析[J].中国电力,2024,57(6):235-242. |
LIU D X, ZHANG X Y, MA Q,et al .Analysis on SO3 generation,migration and control technology of coal-fired units[J].Electric Power,2024,57(6):235-242. | |
[18] | 刘文斌,李璐璐,李晓金,等 .脱硫湿烟气喷淋冷凝过程中的参数优化研究[J].发电技术,2023,44(1):107-114. doi:10.12096/j.2096-4528.pgt.21064 |
LIU W B, LI L L, LI X J,et al .Study on parameter optimization of desulfurized wet flue gas in spray condensation process[J].Power Generation Technology,2023,44(1):107-114. doi:10.12096/j.2096-4528.pgt.21064 | |
[19] | GUNGOR A .One dimensional numerical simulation of small scale CFB combustors[J].Energy Conversion and Management,2009,50(3):711-722. doi:10.1016/j.enconman.2008.10.003 |
[20] | WANG C, CHEN L .The effect of steam on simultaneous calcination and sulfation of limestone in CFBB[J].Fuel,2016,175:164-171. doi:10.1016/j.fuel.2016.02.028 |
[21] | 李仕成,马素霞 .300 MW循环流化床锅炉SO2生成与控制的建模研究[J].中国电机工程学报,2021,41(17):5966-5972. |
LI S C, MA S X .Model study on SO2 generation and control of 300 MW CFB boiler[J].Proceedings of the CSEE,2021,41(17):5966-5972. | |
[22] | ZHANG H, GAO M, LIU C,et al .Dynamic prediction of in-situ SO2 emission and operation optimization of combined desulfurization system of 300 MW CFB boiler[J].Fuel,2022,324(1):124421. doi:10.1016/j.fuel.2022.124421 |
[23] | 陈习勋,吴凯彤,何杰,等 .基于集成机器学习模型的短期光伏出力区间预测[J].智慧电力,2024,52(2):87-93. |
CHEN X X, WU K T, HE J,et al . Short term photovoltaic output interval prediction based on integrated machine learning model[J].Smart Power,2024,52(2):87-93. | |
[24] | CHEN J, GAO M, ZHANG H,et al .Dynamic prediction of SO2 emission based on hybrid modeling method for coal-fired circulating fluidized bed[J].Fuel,2023,346:128284. doi:10.1016/j.fuel.2023.128284 |
[25] | 洪文鹏,陈重 .基于偏最小二乘回归的氨法烟气脱硫效率预测[J].动力工程学报,2013,33(3):205-209. doi:10.3969/j.issn.1674-7607.2013.03.008 |
HONG W P, CHEN Z .Efficiency prediction of ammonia flue gas desulfurization based on partial least squares regression[J].Journal of Chinese Society of Power Engineering,2013,33(3):205-209. doi:10.3969/j.issn.1674-7607.2013.03.008 | |
[26] | 伊长涛,辛胜伟,王虎,等 .300 MW循环流化床锅炉机组超低排放改造[J].洁净煤技术,2019,25(S2):48-52. |
YI C T, XIN S W, WANG H,et al .Ultra-low emission modification of 300 MW circulating fluidized bed boilers unit[J].Clean Coal Technology,2019,25(S2):48-52. | |
[27] | 高明明 .大型循环流化床锅炉燃烧状态监测研究[D].北京:华北电力大学,2013. |
GAO M M .Research on combustion state monitoring of large circulating fluidized bed boiler[D].Beijing:North China Electric Power University,2013. | |
[28] | ZHANG H, GAO M, YUE G,et al .Dynamic model for subcritical circulating fluidized bed boiler-turbine units operated in a wide-load range[J].Applied Thermal Engineering,2022,213:118742. doi:10.1016/j.applthermaleng.2022.118742 |
[29] | 孙保民,赵立正 .660 MW机组CFB锅炉设计煤种排放特性试验[J].热力发电,2015,44(11):81-85. |
SUN B M, ZHAO L Z .Experimental study on emission characteristics of design coal for a 660 MW unit circulating fluidized bed boiler[J].Thermal Power Generation,2015,44(11):81-85. | |
[30] | 舒坚 .燃煤电厂湿法脱硫系统关键过程建模及预测控制研究[D].杭州:浙江大学,2020. |
SHU J .Research on key process modeling and predictive control for wet desulfurization system in coal-fired unit[D].Hangzhou:Zhejiang University,2020. | |
[31] | ZHU J, YE S C, BAI J,et al .A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization[J].Fuel Processing Technology,2015,129:15-23. doi:10.1016/j.fuproc.2014.07.002 |
[32] | 张思海,张双铭,张俊杰,等 .330 MW亚临界CFB锅炉烟气再循环深度调峰运行性能研究[J].洁净煤技术,2021,27(1):291-298. |
ZHANG S H, ZHANG S M, ZHANG J J,et al .Performance research on deep peak regulation with flue gas recirculation in a 330 MW subcritical CFB boiler[J].Clean Coal Technology,2021,27(1):291-298. |
[1] | Yicai WANG, Xin YU, Dunxi YU. Research Progress on Utilization of Arundo Donax L. Combustion [J]. Power Generation Technology, 2025, 46(3): 570-578. |
[2] | Pengxin ZHANG, Mingming GAO, Peiran XIE, Haoyang YU, Hongfu ZHANG, Zhong HUANG. NO x Prediction for Deep Peaking Regulation of Circulating Fluidized Bed Units Based on Data-Driven [J]. Power Generation Technology, 2025, 46(3): 627-636. |
[3] | Jianning DONG, Jizhen AN, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Performance Prediction Method for Air Cooling System of Thermal Power Unit Considering Weather Effect [J]. Power Generation Technology, 2024, 45(6): 1105-1113. |
[4] | Tingting XIE, Youyuan SUN, Zhen GUO, Mingguang SONG. Summary of Research and Application of Continuous Monitoring Technology for Carbon Emissions From Thermal Power Units [J]. Power Generation Technology, 2024, 45(5): 919-928. |
[5] | Qiwei ZHENG, Xinyue ZHAO, Di LU, Heng CHEN, Peiyuan PAN, Tong LIU. Comparative Evaluation of Thermoelectric Decoupling Potential and Economy of Multi-Type Small Capacity Thermal Power Units [J]. Power Generation Technology, 2024, 45(5): 929-940. |
[6] | Yinan WANG, Jiayang LÜ, Heng CHEN, Guoqiang ZHANG, Gang XU, Rongrong ZHAI. Research on Modeling and Variable Operating Condition Characteristics of Entrained Flow Coal Gasifier Based on Aspen Plus [J]. Power Generation Technology, 2024, 45(5): 951-958. |
[7] | Wang LIU, Lian CHEN, Gaoyang GONG, Zhihua LI, Wenhua XUE, Jingang SHI, Jun XIE, Leilei LI, Rongcai YAO, Zhaopeng WANG, Yanxi YANG, Yi DENG, Chenhui ZHANG. Research on Predictive Maintenance Mode of Air Preheater Based on Digital Twin [J]. Power Generation Technology, 2024, 45(4): 622-632. |
[8] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[9] | Xiaofeng CHEN, Chuan ZUO, Ning ZHAO, Kai HUANG, Huijie WANG. Analysis on Peak Regulation Characteristics of Thermal Power Units With Integrated Heat Storage Device [J]. Power Generation Technology, 2024, 45(3): 392-400. |
[10] | Zheng YANG, Yipeng SUN, Zhiqiang WEN, Liang CHENG, Zhanguo LI. Research on Dry-Wet Conversion Strategy of Supercritical Thermal Power Units Under Deep Peaking Condition [J]. Power Generation Technology, 2024, 45(2): 233-239. |
[11] | Zhan LI, Zhenyong YANG, Lei LIU, Zhensan CHEN, Weiming JI, Feng HONG. Analysis of the Influence of Furnace Side Heat Storage Coefficient on Primary Frequency Modulation Capacity Under Deep Modulation Condition of Thermal Power Unit [J]. Power Generation Technology, 2024, 45(2): 226-232. |
[12] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[13] | Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU. Analysis on Thermoelectric Decoupling Technology Paths for Thermal Power Units Under the Background of Deep Peak-Shaving [J]. Power Generation Technology, 2024, 45(2): 207-215. |
[14] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[15] | Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure [J]. Power Generation Technology, 2024, 45(2): 240-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||