| [1] |
李家桐,谢宁,王承民,等.基于CHP机组碳排放分析的综合能源系统低碳调度优化方法[J].智慧电力,2024,52(6):31-37.
|
|
LI J T, XIE N, WANG C M,et al .Low-carbon dispatch optimization method for integrated energy system based on carbon emission analysis of CHP units[J].Smart Power,2024,52(6):31-37.
|
| [2] |
兰天楷,孙华东,王琦,等 .考虑分布式新能源的有源综合负荷模型[J].电工技术学报,2024,39(23):7365-7378. doi:10.1109/tpwrs.2023.3250648
|
|
LAN T K, SUN H D, WANG Q,et al .Active synthesis load model considering distributed renewable energy source[J].Transactions of China Electrotechnical Society,2024,39(23):7365-7378. doi:10.1109/tpwrs.2023.3250648
|
| [3] |
邵宜祥,刘剑,胡丽萍,等 .一种改进组合神经网络的超短期风速预测方法研究[J].发电技术,2024,45(2):323-330.
|
|
SHAO Y X, LIU J, HU L P,et al .Research on an ultra-short-term wind speed prediction method based on improved combined neural networks[J].Power Generation Technology,2024,45(2):323-330.
|
| [4] |
张海涛,李文娟,李雪峰,等 .基于变分模态分解和时间注意力机制TCN网络的光伏发电功率预测[J].电测与仪表,2024,61(12):156-163.
|
|
ZHANG H T, LI E J, LI X F,et al .Photovoltaic power forecasting based on TPA-TCN model and variational modal decomposition[J].Electrical Merasurement & Instrumentation,2024,61(12):156-163.
|
| [5] |
XU Z Y, WANG R Z, YANG C .Perspectives for low-temperature waste heat recovery[J].Energy,2019,176:1037-1043. doi:10.1016/j.energy.2019.04.001
|
| [6] |
HUR S, KIM S, KIM H S,et al .Low-grade waste heat recovery scenarios:pyroelectric,thermomagnetic,and thermogalvanic thermal energy harvesting[J].Nano Energy,2023,114:108596. doi:10.1016/j.nanoen.2023.108596
|
| [7] |
YAN H Z, ZHANG C, SHAO Z,et al .The underestimated role of the heat pump in achieving China’s goal of carbon neutrality by 2060[J].Engineering,2023,23:13-18. doi:10.1016/j.eng.2022.08.015
|
| [8] |
HAMID K, SAJJAD U, AHRENS M U,et al .Potential evaluation of integrated high temperature heat pumps: a review of recent advances[J].Applied Thermal Engineering,2023,230:120720. doi:10.1016/j.applthermaleng.2023.120720
|
| [9] |
SEO J H, KANG S, KIM K,et al .Compact heat pipe heat exchanger for waste heat recovery within a low- temperature range[J].International Communications in Heat and Mass Transfer,2024,155:107550. doi:10.1016/j.icheatmasstransfer.2024.107550
|
| [10] |
LI J, PENG X Y, YANG Z,et al .Design,improvements and applications of dual-pressure evaporation organic Rankine cycles:a review[J].Applied Energy,2022,311:118609. doi:10.1016/j.apenergy.2022.118609
|
| [11] |
SILVA-ROMERO J C, BELMAN-FLORES J M, ACEVES S M .A review of small-scale vapor compression refrigeration technologies[J].Applied Sciences,2024,14(7):3069. doi:10.3390/app14073069
|
| [12] |
GRUBER S, ROLA K, URBANCL D,et al .Recent advances in ejector-enhanced vapor compression heat pump and refrigeration systems-a review[J].Energies,2024,17(16):4043-4051. doi:10.3390/en17164043
|
| [13] |
MOUNIER V, MENDOZA L C, SCHIFFMANN J. Thermo-economic optimization of an ORC driven heat pump based on small scale turbomachinery and comparison with absorption heat pumps[J]. International Journal of Refrigeration,2017,81:96-110. doi:10.1016/j.ijrefrig.2017.05.021
|
| [14] |
ANEKE M, AGNEW B, UNDERWOOD C,et al. Thermodynamic analysis of alternative refrigeration cycles driven from waste heat in a food processing application[J].International Journal of Refrigeration,2012,35(5):1349-1358. doi:10.1016/j.ijrefrig.2012.04.008
|
| [15] |
王英洁 .低温余热驱动的有机朗肯耦合蒸汽压缩制冷循环系统性能模拟[D].大连:大连理工大学,2019.
|
|
WANG Y J .Performance analysis of organic Rankine cycle coupled with vapor compression refrigeration cycle system driven by low-grade waste heat[D]. Dalian:Dalian University of Technology,2019.
|
| [16] |
马国远,房磊,许树学,等 .不同工质有机朗肯-蒸汽压缩复合式热泵系统的能效特性比较[J].北京工业大学学报,2016,42(2):296-301.
|
|
MA G Y, FANG L, XU S X,et al .Comparison study of energy ratio of ORC compound with vapor compression heat pump system using different working fluid[J].Journal of Beijing University of Technology, 2016,42(2):296-301.
|
| [17] |
ZHAR R, ALLOUHI A, GHODBANE M,et al. Parametric analysis and multi-objective optimization of a combined organic Rankine cycle and vapor compression cycle[J].Sustainable Energy Technologies and Assessments,2021,47:101401. doi:10.1016/j.seta.2021.101401
|
| [18] |
黄成达,马国远,许树学,等 .有机朗肯-蒸汽压缩复合式热泵系统性能研究[J].低温与超导,2017,45(1):74-79.
|
|
HUANG C D, MA G Y, XU S X,et al .Characteristic study on ORC-vapour compression compound heat pump system[J].Cryogenics and Superconductivity, 2017,45(1):74-79.
|
| [19] |
ZHENG N, WEI J J, ZHAO L .Analysis of a solar Rankine cycle powered refrigerator with zeotropic mixtures[J].Solar Energy,2018,162:57-66. doi:10.1016/j.solener.2018.01.011
|
| [20] |
PEKTEZEL O, ACAR H I .Energy and exergy analysis of combined organic Rankine cycle-single and dual evaporator vapor compression refrigeration cycle[J].Applied Sciences,2019,9(23):5028-5035. doi:10.3390/app9235028
|
| [21] |
WANG Z Q, ZHOU Q Y, XIA X X,et al .Performance comparison and analysis of a combined power and cooling system based on organic Rankine cycle[J].Journal of Central South University,2017,24:353-359. doi:10.1007/s11771-017-3437-5
|
| [22] |
SHERWANI A F .Thermodynamic analysis of hybrid heat source driven organic Rankine cycle integrated flash tank vapor-compression refrigeration system[J].International Journal of Refrigeration,2021,129:267-277. doi:10.1016/j.ijrefrig.2021.05.006
|
| [23] |
SALIM M S, KIM M H .Multi-objective thermos- economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle[J].Energy Conversion and Management,2019,199:112054. doi:10.1016/j.enconman.2019.112054
|
| [24] |
张霞玲,张美琼,王燕,等 .法律法规引导下制冷剂的替代趋势[J].润滑油,2019,34(3):1-6.
|
|
ZHANG X L, ZHANG M Q, WANG Y,et al .The alternative trend of refrigerant guided by laws and regulations[J].Lubricating Oil,2019,34(3):1-6.
|
| [25] |
MCLINDEN M O, HUBER M L .Evolution of refrigerants[J].Journal of Chemical & Engineering Data,2020,65(9):4176-4193. doi:10.1021/acs.jced.0c00338
|
| [26] |
黄志华 .制冷剂的可持续发展与未来[J].冷藏技术,2020,43(4):1-5.
|
|
HUANG Z H .Sustainable development and future of refrigerants[J].Journal of Refrigeration Technology,2020,43(4):1-5.
|
| [27] |
PRIGMORE D, BARBER R .Cooling with the sun’s heat design considerations and test data for a Rankine cycle prototype[J].Solar Energy,1975,17(3):185-192. doi:10.1016/0038-092x(75)90058-4
|
| [28] |
GRAUBERGER A, YOUNG D, BANDHAUER T. Off-design performance of an organic Rankine-vapor compression cooling cycle using R1234ze(E)[J]. Applied Energy,2022,321:119421. doi:10.1016/j.apenergy.2022.119421
|
| [29] |
AKTEMUR C, HACIPASAOGLU G .Assessment of an integrated organic Rankine cycle (ORC)-vapor compression refrigeration (VCR) system using the energy, conventional exergy,and advanced exergy analysis[J].Heat Transfer Research,2021,52(15):168-175. doi:10.1615/heattransres.2021037536
|
| [30] |
BAO J J, ZHANG L, SONG C X,et al .Comparative study of combined organic Rankine cycle and vapor compression cycle for refrigeration:Single fluid or dual fluid[J].Sustainable Energy Technologies and Assessments,2020,37:100595. doi:10.1016/j.seta.2019.100595
|
| [31] |
TABAN D, APOSTOL V, GROSU L,et al. Exergoeconomic analysis of a mechanical compression refrigeration unit run by an ORC[J].Entropy,2023,25(11):1531-1539. doi:10.3390/e25111531
|
| [32] |
NASIR M T, EKWONU M C, ESFAHANI J A,et al. Integrated vapor compression chiller with bottoming organic Rankine cycle and onsite low-grade renewable energy[J].Energies,2021,14(19):6401-6410. doi:10.3390/en14196401
|
| [33] |
LI T L, WANG J Y, JIN F Y,et al .Techno- economic and environmental performance of a novel poly-generation system under different energy-supply scenarios and temperature and humidity independent control[J].Case Studies in Thermal Engineering,2023,50:103447. doi:10.1016/j.csite.2023.103447
|
| [34] |
ASHWNI G, SHERWANI A F, TIWARI D,et al. Sensitivity analysis and multi-objective optimization of organic Rankine cycle integrated with vapor compression refrigeration system[J].Energy Sources, Part A:Recovery,Utilization,and Environmental Effects,2021:1-13. doi:10.1016/j.ijrefrig.2021.02.005
|
| [35] |
SHERWANI A F .Analysis of solar energy driven organic Rankine cycle-vapor compression refrigeration system[J].Thermal Science and Engineering Progress,2022,35:101477. doi:10.1016/j.tsep.2022.101477
|
| [36] |
LI T L, LI X L, GAO H Y,et al .Thermodynamic performance of geothermal energy cascade utilization for combined heating and power based on organic Rankine cycle and vapor compression cycle [J]. Energies,2022,15(19):7294-7302. doi:10.3390/en15197294
|
| [37] |
XIA X X, LIU Z P, WANG Z Q,et al .Multi-layer performance optimization based on operation parameter-working fluid-heat source for the ORC-VCR system[J].Energy,2023,272:127103. doi:10.1016/j.energy.2023.127103
|
| [38] |
SALEH B, ALY A A, ALOGLA A F,et al .Performance investigation of organic Rankine-vapor compression refrigeration integrated system activated by renewable energy[J].Mechanics & Industry,2019,20(2):206-214. doi:10.1051/meca/2019023
|
| [39] |
ARPAGAUS C, BLESS F, UHLMANN M,et al .High temperature heat pumps:market overview,state of the art,research status,refrigerants,and application potentials[J].Energy,2018,152:985-1010. doi:10.1016/j.energy.2018.03.166
|
| [40] |
DEVOTTA S, PENDYALA V R .Thermodynamic screening of some HFCs and HFEs for high-temperature heat pumps as alternatives to CFC114[J].International Journal of Refrigeration,1994,17(5):338-342. doi:10.1016/0140-7007(94)90064-7
|
| [41] |
董益秀,王如竹 .高温热泵的循环,工质研究及应用展望[J].化工学报,2023,74(1):133-144.
|
|
DONG Y X, WANG R Z .High temperature heat pump:cycle configurations,working fluids and application potentials[J].CIESC Journal,2023,74(1):133-144.
|
| [42] |
KHATOON S, ALMEFREJI N M A, KIM M H .Thermodynamic study of a combined power and refrigeration system for low-grade heat energy source[J].Energies,2021,14(2):410-419. doi:10.3390/en14020410
|
| [43] |
李健,杨震,段远源 .中低温热能驱动的非共沸工质有机Rankine循环[J].清华大学学报(自然科学版),2022,62(4):693-703.
|
|
LI J, YANG Z, DUAN Y Y .Organic Rankine cycles using zeotropic mixtures driven by low-to-medium temperature thermal energy[J].Journal of Tsinghua University (Science and Technology),2022,62(4):693-703.
|
| [44] |
MIAO Z, ZHANG K, WANG M X,et al. Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle[J].Energy,2019,167:484-497. doi:10.1016/j.energy.2018.11.002
|
| [45] |
XIA X X, ZHANG H L, WANG Z Q,et al. Performance comparison of two ORC-VCR system configurations using pure/mixture working fluids based on multi-objective optimization[J].Applied Thermal Engineering,2024,255:124027. doi:10.1016/j.applthermaleng.2024.124027
|
| [46] |
黄仁龙,钟天明,王亚阁 .组分调控非共沸有机朗肯循环研究进展[J].新能源进展,2023,11(3):273-279.
|
|
HUANG R L, ZHONG T M, WANG Y G .Research progress of composition-adjustable zeotropic organic Rankine cycle[J].Advances in New and Renewable Energy,2023,11(3):273-279.
|
| [47] |
GOYAL A, RAWAT P, SHERWANI A F,et al .Advanced exergy,economic,and environmental evaluation of an organic Rankine cycle driven dual evaporators vapor-compression refrigeration system using organic fluids[J].International Journal of Refrige ration,2023,150:170-184. doi:10.1016/j.ijrefrig.2023.02.002
|
| [48] |
KARELLAS S, BRAIMAKIS K .Energy-exergy analysis and economic investigation of a cogeneration and trigeneration ORC-VCC hybrid system utilizing biomass fuel and solar power[J].Energy Conversion and Management,2016,107:103-113. doi:10.1016/j.enconman.2015.06.080
|
| [49] |
YUE C, TONG L, ZHANG S .Thermal and economic analysis on vehicle energy supplying system based on waste heat recovery organic Rankine cycle[J].Applied Energy,2019,248:241-255. doi:10.1016/j.apenergy.2019.04.081
|
| [50] |
ZHOU X, ZHANG H, RONG Y,et al .Comparative study for air compression heat recovery based on organic Rankine cycle (ORC) in cryogenic air separation units[J].Energy,2022,255:124514. doi:10.1016/j.energy.2022.124514
|
| [51] |
YUE C, YOU F Q, HUANG Y .Thermal and economic analysis of an energy system of an ORC coupled with vehicle air conditioning[J].International Journal of Refrigeration,2016,64:152-167. doi:10.1016/j.ijrefrig.2016.01.005
|
| [52] |
BELLOS E, TZIVANIDIS C .Parametric analysis of a solar-driven trigeneration system with an organic Rankine cycle and a vapor compression cycle[J].Energy and Built Environment,2021,2(3):278-289. doi:10.1016/j.enbenv.2020.08.004
|
| [53] |
SHERWANI A F, TIWARI D .Exergy,economic and environmental analysis of organic Rankine cycle based vapor compression refrigeration system[J].International Journal of Refrigeration,2021,126:259-271. doi:10.1016/j.ijrefrig.2021.02.005
|
| [54] |
SONG J, OLYMPIOS A, MERSCH M,et al .Integrated organic rankine cycle (ORC) and heat pump (HP) systems for domestic heating[C]//34th International Conference on Efficiency,Costs,Optimization,Simulation and Environmental Impact of Energy Systems (ECOS 2021).Taormina,Italy:IEEE,2021:1280-1291. doi:10.52202/062738-0143
|
| [55] |
ALSHAMMARI S, KADAM S T, YU Z .Assessment of single rotor expander-compressor device in combined organic Rankine cycle (ORC) and vapor compression refrigeration cycle (VCR)[J].Energy,2023,282:128763. doi:10.1016/j.energy.2023.128763
|
| [56] |
KIM M H .Energy and exergy analysis of solar organic Rankine cycle coupled with vapor compression refrigeration cycle[J].Energies,2022,15(15):5603. doi:10.3390/en15155603
|
| [57] |
HU B, GUO J J, YANG Y,et al .Performance analysis and working fluid selection of organic Rankine steam compression air conditioning driven by ship waste heat[J].Energy Reports,2022,8:194-202. doi:10.1016/j.egyr.2022.01.094
|
| [58] |
NASIR M T, EKWONU M C, PARK Y,et al. Assessment of a district trigeneration biomass powered double organic Rankine cycle as primed mover and supported cooling[J].Energies,2021,14(4):1-24. doi:10.3390/en14041030
|
| [59] |
MEIBODI S S, LOVERIDGE F .The future role of energy geostructures in fifth generation district heating and cooling networks[J].Energy,2022,240:122481. doi:10.1016/j.energy.2021.122481
|
| [60] |
KUTLU C, ERDINC M T, LI J,et al .A study on heat storage sizing and flow control for a domestic scale solar-powered organic Rankine cycle-vapour compression refrigeration system[J].Renewable Energy,2019,143:301-312. doi:10.1016/j.renene.2019.05.017
|
| [61] |
张留淦,周颖驰,孙文兵,等 .利用 ORC-VCR 回收压缩热的预冷式 CAES 系统性能分析[J].储能科学与技术,2024,13(2):611-618.
|
|
ZHANG L G, ZHOU Y C, SUN W B,et al. Performance analysis of pre-cooled CAES system driven by low-temperature waste heat using ORC-VCR to recover compression heat[J].Energy Storage Science and Technology,2024,13(2):611-618.
|
| [62] |
TAUSEEF NASIR M, EKWONU M C, PARK Y,et al. Assessment of a district trigeneration biomass powered double organic Rankine cycle as primed mover and supported cooling[J].Energies,2021,14(4):1030-1037. doi:10.3390/en14041030
|
| [63] |
MENG N, LI T, WANG J,et al .Synergetic cascade-evaporation mechanism of a novel building distributed energy supply system with cogeneration and temperature and humidity independent control characteristics[J].Energy Conversion and Management,2020,209:112620. doi:10.1016/j.enconman.2020.112620
|
| [64] |
CHEN L, YUE H, WANG J,et al .Thermodynamic analysis of a hybrid energy system coupling solar organic Rankine cycle and ground source heat pump: Exploring heat cascade utilization[J].Energy,2023,284:129228. doi:10.1016/j.energy.2023.129228
|
| [65] |
ZHOU X, RONG Y, FANG S,et al .Thermodynamic analysis of an organic Rankine-vapor compression cycle (ORVC) assisted air compression system for cryogenic air separation units[J].Applied Thermal Engineering,2021,189:116678. doi:10.1016/j.applthermaleng.2021.116678
|
| [66] |
KAŞKA Ö, YILMAZ C,BOR O,et al .The performance assessment of a combined organic Rankine-vapor compression refrigeration cycle aided hydrogen liquefaction[J].International Journal of Hydrogen Energy,2018,43(44):20192-20202. doi:10.1016/j.ijhydene.2018.07.092
|
| [67] |
MOHAMMED R H, IBRAHIM M M, ABU-HEIBA A. Exergoeconomic and multi-objective optimization analyses of an organic Rankine cycle integrated with multi-effect desalination for electricity,cooling,heating power,and freshwater production[J].Energy Conversion and Management,2021,231:113826. doi:10.1016/j.enconman.2021.113826
|
| [68] |
NELLISSEN P, WOLF S .Heat pumps in non-domestic applications in Europe:potential for an energy revolution[J].Emerson Climate Technologies,2015,56:356-361.
|