Power Generation Technology ›› 2021, Vol. 42 ›› Issue (3): 350-356.DOI: 10.12096/j.2096-4528.pgt.21029
• Power Generation and Enviromental Protection • Previous Articles Next Articles
Youhua HUANG1(), Shanwei MA2(
), Ji LIU2(
), Zhenghua WU2,*(
)
Received:
2021-01-06
Published:
2021-06-30
Online:
2021-06-29
Contact:
Zhenghua WU
Supported by:
CLC Number:
Youhua HUANG, Shanwei MA, Ji LIU, Zhenghua WU. Optimization Design and Engineering Application of Gas Turbine SCR Denitrification System[J]. Power Generation Technology, 2021, 42(3): 350-356.
项目 | 电厂A | 电厂B | 电厂C |
喷氨形式 | 大格栅 | 入口喷枪 | 扩散段格栅 |
运行情况 | 脱硝效率达标,氨逃逸超标 | 脱硝效率达标,氨逃逸超标 | 脱硝效率达标,氨逃逸超标 |
整改方法 | 增加分区数量,优化流场 | 优化流场 | 优化流场 |
效果 | 氨逃逸临界超标 | 氨逃逸超标 | 氨逃逸超标 |
产生原因 | 混合时间短,分区数量不足 | 喷枪数量少,流场分布不均 | 流场分布不均,分区数量不足 |
Tab. 1 Effect comparison of spraying ammonia grilles in different positions
项目 | 电厂A | 电厂B | 电厂C |
喷氨形式 | 大格栅 | 入口喷枪 | 扩散段格栅 |
运行情况 | 脱硝效率达标,氨逃逸超标 | 脱硝效率达标,氨逃逸超标 | 脱硝效率达标,氨逃逸超标 |
整改方法 | 增加分区数量,优化流场 | 优化流场 | 优化流场 |
效果 | 氨逃逸临界超标 | 氨逃逸超标 | 氨逃逸超标 |
产生原因 | 混合时间短,分区数量不足 | 喷枪数量少,流场分布不均 | 流场分布不均,分区数量不足 |
1 | 刘志坦, 姚杰, 庄柯, 等. 燃气轮机与燃煤机组SCR脱硝催化剂特性比较[J]. 中国电力, 2021, 54 (6): 145- 152. |
LIU Z T , YAO J , ZHUANG K , et al. Comparison of characteristics of SCR-DeNOx catalyst between gas turbine and coal-fired units[J]. Electric Power, 2021, 54 (6): 145- 152. | |
2 | 卢辉, 杨君君, 罗建超, 等. 尿素直喷在燃气蒸汽联合循环机组上的应用[J]. 热力发电, 2020, 49 (4): 41- 45. |
LU H , YANG J J , LUO J C , et al. Application of urea direct injection on gas-steam combined cycle units[J]. Thermal Power Generation, 2020, 49 (4): 41- 45. | |
3 | 唐诗洁, 陆强, 曲艳超, 等. 基于遗传算法优化BP神经网络的SCR脱硝系统催化剂体积设计[J]. 发电技术, 2019, 40 (3): 246- 252. |
TANG S J , LU Q , QU Y C , et al. Catalyst volume design in SCR denitrification system based on genetic algorithm optimized BP neural network[J]. Power Generation Technology, 2019, 40 (3): 246- 252. | |
4 | 翁麒宇, 李端乐, 禚玉群. NH3对SCR催化剂Hg0催化氧化性能的影响[J]. 发电技术, 2020, 41 (5): 471- 479. |
WENG Q Y , LI D L , ZHUO Y Q . Influence of NH3 on Hg0 oxidation performance of SCR catalyst[J]. Power Generation Technology, 2020, 41 (5): 471- 479. | |
5 | 邹堃, 王丹秋. SCR烟气脱硝系统出口烟道NOx测点技术改造[J]. 发电技术, 2019, 40 (2): 155- 160. |
ZOU K , WANG D Q . Technical transformation of NOx measuring point for outlet flue of SCR system[J]. Power Generation Technology, 2019, 40 (2): 155- 160. | |
6 |
ZHANG N , LI L , GUO Y , et al. A MnO2-based catalyst with H2O resistance for NH3-SCR: study of catalytic activity and reactants-H2O competitive adsorption[J]. Applied Catalysis B: Environmental, 2020, 270, 118860.
DOI |
7 |
JIANG B , ZHAO S , WANG Y , et al. Plasma-enhanced low temperature NH3-SCR of NOx over a Cu-Mn/SAPO-34 catalyst under oxygen-rich conditions[J]. Applied Catalysis B: Environmental, 2021, 286, 119886.
DOI |
8 |
BALETA J , MARTINJAK M , VUJANOVIC M , et al. Numerical analysis of ammonia homogenization for selective catalytic reduction application[J]. Journal of Environmental Management, 2017, 203, 1047- 1061.
DOI |
9 | 范江, 张双平, 孟宇, 等. 660MW燃煤机组瞬态过程NOx生成及脱除特性[J]. 发电技术, 2020, 41 (5): 527- 535. |
FAN J , ZHANG S P , MENG Y , et al. Characteristics of NOx formation and removal in the transient process of a 660MW coal-fired power unit[J]. Power Generation Technology, 2020, 41 (5): 527- 535. | |
10 | 罗志, 许剑, 李斌, 等. 燃用高沾污性煤质锅炉SCR脱硝流场优化[J]. 热力发电, 2018, 47 (12): 115- 121. |
LUO Z , XU J , LI B , et al. Optimization of flow field in SCR denitration system for boiler burning highly contaminated coal[J]. Thermal Power Generation, 2018, 47 (12): 115- 121. | |
11 | 刘晓敏. 烟气脱硝SCR装置喷氨优化研究[J]. 热力发电, 2012, 41 (7): 87- 89. |
LIU X M . Optimization of ammonia injection for SCR equipment[J]. Thermal Power Generation, 2012, 41 (7): 87- 89. | |
12 |
曹志勇, 谭城军, 李建中, 等. 燃煤锅炉SCR烟气脱硝系统喷氨优化调整试验[J]. 中国电力, 2011, 44 (11): 55- 58.
DOI |
CAO Z Y , TAN C J , LI J Z , et al. Experiment of optimization adjustment for ammonia injection of selective catalytic reduction flue gas denitration system in coal-fired boiler[J]. Electric Power, 2011, 44 (11): 55- 58.
DOI |
|
13 | 孙金龙. 330MW燃煤火电机组脱硝系统的优化研究[J]. 发电技术, 2019, 40 (6): 570- 579. |
SUN J L . Optimization study of denitrification system for 330 MW coal-fired thermal power unit[J]. Power Generation Technology, 2019, 40 (6): 570- 579. | |
14 | 李文华. 660MW超临界机组SCR脱硝优化调整[J]. 洁净煤技术, 2020, 26 (S1): 184- 189. |
LI W H . Optimal adjustment of SCR denitrification for 660 MW supercritical unit[J]. Clean Coal Technology, 2020, 26 (S1): 184- 189. | |
15 | 董陈, 曾洋波, 李文杰, 等. 低位布置燃气轮机SCR烟气脱硝数值模拟研究与应用[J]. 热力发电, 2020, 409 (12): 144- 149. |
DONG C , ZENG Y B , LI W J , et al. Flue gas denitration technology of gas turbine with lower position arrangement: research and application[J]. Thermal Power Generation, 2020, 409 (12): 144- 149. | |
16 | 机械工业环境保护机械标准化技术委员会. 燃气余热锅炉烟气脱硝技术装备: JB/T 11265-2012[S]. 北京: 机械工业出版社, 2012. |
Technical Committee for Standardization of Environmental Protection Machinery in Mechanical Industry. Gas fired waste heat recovery boilers denitration equipment: JB/T 11265-2012[S]. Beijing: China Machine Press, 2012. |
[1] | Zeyang CUI, Xiangling KONG, Jinglun FU, Jiajun SHI. An Image-Based Turbine Blade Parameter Inspection Method [J]. Power Generation Technology, 2024, 45(1): 106-112. |
[2] | Yang YANG, Yaoqiang LI, Jinqi ZHANG. Design of Dome Structure for A Lean Premixed Swirled Combustor of Gas Turbine Based on the Numerical Method [J]. Power Generation Technology, 2023, 44(5): 712-721. |
[3] | Yang YANG, Desan GUO, Yaoqiang LI, Jinqi ZHANG. Design of Lean Premixed Multi-Swirl Combustor Dome Structure for Gas Turbine [J]. Power Generation Technology, 2023, 44(2): 183-192. |
[4] | Hongyi ZHANG, Litao QU. Research and Application of Numerical Simulation for Selective Catalytic Reduction Denitration of 9F Gas Turbine [J]. Power Generation Technology, 2023, 44(1): 78-84. |
[5] | Jiangang HAO, Wenming GONG, Yang DING, Danwei ZHENG, Yong LIU. Analysis on Combustion Instability Characteristics of Model Swirl Combustor With Gas Fuel [J]. Power Generation Technology, 2022, 43(6): 927-934. |
[6] | Yunfeng JIN, Chao LIU, Gaofeng DENG, Yunlong GUAN, Jiangang HAO, Haizhou HUANG, Dongxiang JIANG. Cost Benefit Analysis for Maintenance Strategy of Gas Turbine Inlet Filtration System [J]. Power Generation Technology, 2022, 43(1): 119-125. |
[7] | Xiangling KONG, Jinglun FU. Computer-Vision Based on Three-dimensional Reconstruction Technology and Its Applications in Gas Turbine Industry [J]. Power Generation Technology, 2021, 42(4): 454-463. |
[8] | Bin QIU, Jinglun FU. Research Status of Gas Turbine Exhaust Diffuser [J]. Power Generation Technology, 2021, 42(4): 437-446. |
[9] | Kai WEI, Zhong LUO, Yonghang SUN, Yu WANG. Analysis of Internal Flow Characteristics of Gas Turbine Ejector Mixer with Valve Plate [J]. Power Generation Technology, 2021, 42(4): 431-436. |
[10] | Hua ZHU, Biao YAN, Yusong LIU, Liang LI. Study on Humid Air Turbine Cooling Technique [J]. Power Generation Technology, 2021, 42(4): 412-421. |
[11] | Jin GUAN, Zongze HE, Xiaojing LÜ, Yiwu WENG. Experimental Study on Startup of 30kW Micro Gas Turbine Generator Set [J]. Power Generation Technology, 2021, 42(4): 404-411. |
[12] | Yunfeng JIN, Chao LIU, Gaofeng DENG, Yunlong GUAN, Xin TIAN, Haizhou HUANG, Dongxiang JIANG. Research on Modeling Method of Gas Turbine Inlet Pressure Loss [J]. Power Generation Technology, 2021, 42(4): 395-403. |
[13] | Mingliang BAI, Dongxue ZHANG, Jinfu LIU, Jiao LIU, Daren YU. Anomaly Detection of Gas Turbine Hot Components Based on Deep Autoencoder and Support Vector Data Description [J]. Power Generation Technology, 2021, 42(4): 422-430. |
[14] | Kejia HU, Jun ZHANG, Tianyu ZHANG, Lixin GAO. Harmonic Analysis of H Class Gas Turbine Generator Starting With Static Frequency Converter Based on Matlab/Simulink Simulation [J]. Power Generation Technology, 2020, 41(6): 697-705. |
[15] | Jihui FANG,Rong WANG. Influence of IGV Opening Degree on the Compressor Efficiency of MITSUBISHI F4 Gas Turbine [J]. Power Generation Technology, 2020, 41(3): 317-319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||