Power Generation Technology ›› 2024, Vol. 45 ›› Issue (2): 207-215.DOI: 10.12096/j.2096-4528.pgt.22117
• Flexible Power Generation Technology Under Dual-Carbon Background • Previous Articles Next Articles
Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU
Received:
2023-07-06
Published:
2024-04-30
Online:
2024-04-29
Contact:
Heng CHEN
Supported by:
CLC Number:
Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU. Analysis on Thermoelectric Decoupling Technology Paths for Thermal Power Units Under the Background of Deep Peak-Shaving[J]. Power Generation Technology, 2024, 45(2): 207-215.
参数 | 数值 |
---|---|
主蒸汽温度/℃ | 538.00 |
主蒸汽压力/MPa | 16.67 |
主蒸汽流量/(t/h) | 937.35 |
再热蒸汽温度/℃ | 538.00 |
再热蒸汽压力/MPa | 3.32 |
再热蒸汽流量/(t/h) | 783.57 |
额定背压/kPa | 14.00 |
给水温度/℃ | 272.20 |
额定功率/MW | 300.00 |
Tab. 1 Basic thermodynamic parameters of THA operating condition of the case unit
参数 | 数值 |
---|---|
主蒸汽温度/℃ | 538.00 |
主蒸汽压力/MPa | 16.67 |
主蒸汽流量/(t/h) | 937.35 |
再热蒸汽温度/℃ | 538.00 |
再热蒸汽压力/MPa | 3.32 |
再热蒸汽流量/(t/h) | 783.57 |
额定背压/kPa | 14.00 |
给水温度/℃ | 272.20 |
额定功率/MW | 300.00 |
参数 | 设计值 | 计算值 | 相对误差/% |
---|---|---|---|
主蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
主蒸汽压力/MPa | 16.67 | 16.67 | 0.00 |
主蒸汽流量/(t/h) | 937.35 | 937.35 | 0.00 |
再热蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
再热蒸汽压力/MPa | 3.32 | 3.32 | -0.06 |
再热蒸汽流量/(t/h) | 783.57 | 782.37 | -0.15 |
额定背压/kPa | 14.00 | 14.00 | 0.00 |
给水温度/℃ | 272.20 | 272.24 | 0.02 |
额定功率/MW | 300.00 | 301.50 | 0.50 |
热耗/[kJ/(kW·h)] | 8 182.40 | 8 065.60 | -1.43 |
Tab. 2 Model verification results
参数 | 设计值 | 计算值 | 相对误差/% |
---|---|---|---|
主蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
主蒸汽压力/MPa | 16.67 | 16.67 | 0.00 |
主蒸汽流量/(t/h) | 937.35 | 937.35 | 0.00 |
再热蒸汽温度/℃ | 538.00 | 538.00 | 0.00 |
再热蒸汽压力/MPa | 3.32 | 3.32 | -0.06 |
再热蒸汽流量/(t/h) | 783.57 | 782.37 | -0.15 |
额定背压/kPa | 14.00 | 14.00 | 0.00 |
给水温度/℃ | 272.20 | 272.24 | 0.02 |
额定功率/MW | 300.00 | 301.50 | 0.50 |
热耗/[kJ/(kW·h)] | 8 182.40 | 8 065.60 | -1.43 |
1 | YUAN S, DAI C, GUO A,et al .A novel multi-objective robust optimization model for unit commitment considering peak load regulation ability and temporal correlation of wind powers[J].Electric Power Systems Research,2019,169:115-123. doi:10.1016/j.epsr.2018.12.032 |
2 | 吕志盛,闫立伟,罗艾青,等 .新能源发电并网对电网电能质量的影响研究[J].华东电力,2012,40(2):251-256. |
LV Z S, YAN L W, LUO A Q,et al .Impact of new energy power grid-integration on grid power quality[J].East China Electric Power,2012,40(2):251-256. | |
3 | 宣文博,李慧,刘忠义,等 .一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J].发电技术,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 |
XUAN W B, LI H, LIU Z Y,et al .A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J].Power Generation Technology,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 | |
4 | 杨立滨,张磊,刘艳章,等 .基于分布式框架的新能源场站并网性能评估[J].电力建设,2022,43(5):137-144. doi:10.12204/j.issn.1000-7229.2022.05.015 |
YANG L B, ZHANG L, LIU Y Z,et al .Grid-connection performance evaluation of renewable energy station under distributed framework[J].Electric Power Construction,2022,43(5):137-144. doi:10.12204/j.issn.1000-7229.2022.05.015 | |
5 | HOWLADER H O R, SEDIQI M M, IBRAHIMI A M,et al .Optimal thermal unit commitment for solving duck curve problem by introducing CSP,PSH and demand response[J].IEEE Access,2018,6:4834-4844. doi:10.1109/access.2018.2790967 |
6 | SHI Y, LI Y, ZHOU Y,et al .Optimal scheduling for power system peak load regulation considering short-time startup and shutdown operations of thermal power unit[J].International Journal of Electrical Power & Energy Systems,2021,131:107012. doi:10.1016/j.ijepes.2021.107012 |
7 | 于国强,刘克天,胡尊民,等 .大规模新能源并网下火电机组深度调峰优化调度[J].电力工程技术, 2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 |
YU G Q, LIU K T, HU Z M,et al .Optimal scheduling of deep peak regulation for thermal power units in power grid with large-scale new energy[J].Electric Power Engineering Technology,2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 | |
8 | LEVIHN F .CHP and heat pumps to balance renewable power production:lessons from the district heating network in Stockholm[J].Energy,2017,137:670-678. doi:10.1016/j.energy.2017.01.118 |
9 | 祝令凯,王为帅,张海静,等 .自备电厂在未来综合能源领域的应用展望[J].山东电力技术,2022,49(2):12-16. doi:10.3969/j.issn.1007-9904.2022.02.003 |
ZHU L K, WANG W S, ZHANG H J,et al .Application prospect of self-contained power plant in the future comprehensive energy field[J].Shandong Electric Power,2022,49(2):12-16. doi:10.3969/j.issn.1007-9904.2022.02.003 | |
10 | 张慧帅 .600 MW热电联产机组利用热网蓄能特性的灵活性研究[D].北京:华北电力大学,2019. doi:10.15407/fm26.01.197 |
ZHANG H S .Research on flexibility of 600 MW cogeneration units using thermal network energy storage characteriistics[D].Beijing:North China Electric Power University,2019. doi:10.15407/fm26.01.197 | |
11 | 武进 .冷热电联供系统热电解耦方案及性能分析[D].北京:华北电力大学,2021. |
WU J .Thermoelectric decoupling scheme and performance analysis of combined cooling heating and power system[D].Beijing:North China Electric Power University,2021. | |
12 | 朱泓逻 .基于Ebsilon的火电厂热力系统建模、监测及优化研究[D].北京:清华大学,2015. |
ZHU H L .The research of modeling,monitoring and optimizing for thermal system of thermal power plant based on ebsilon[D].Beijing:Tsinghua University,2015. | |
13 | LIU M, MA G, WANG S,et al .Thermo-economic comparison of heat-power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub[J].Renewable and Sustainable Energy Reviews,2021,152:111715. doi:10.1016/j.rser.2021.111715 |
14 | 李树明,刘青松,朱小东,等 .350 MW超临界热电联产机组灵活性改造分析[J].发电技术,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 |
LI S M, LIU Q S, ZHU X D,et al .Flexibility transformation analysis of 350 MW supercritical cogeneration unit[J].Power Generation Technology,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 | |
15 | 王林,伍刚,张亚夫,等 .1 000 MW深度调峰机组热力系统优化研究[J].发电技术,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 |
WANG L, WU G, ZHANG Y F,et al .Thermodynamic system optimization research on 1 000 MW deep peak-regulating unit[J].Power Generation Technology,2019,40(3):265-269. doi:10.12096/j.2096-4528.pgt.18178 | |
16 | 唐树芳,王丰吉,唐郭安,等 .200 MW热电联产机组火电灵活性供热改造分析[J].工程技术研究,2022,7(6):110-112. |
TANG S F, WANG F J, TANG G A,et al .Analysis of thermal power flexible heating retrofit for 200 MW cogeneration units[J].Engineering Technology Study,2022,7(6):110-112. | |
17 | 薛永明,池晓,张秋丹 .电厂循环冷却水余热供暖方式的经济性分析[C]//2019供热工程建设与高效运行研讨会(上海).2019:208-214. |
XUE Y M, CHI X, ZHANG Q D .Economic benefit analysis of several methods of utilizing circulating cooling water in heating system in power plant[C]//2019 Seminar on Construction and Efficient Operation of Heat Supply Projects(Shanghai).2019:208-214. | |
18 | 陈建国,谢争先,付怀仁,等 .300 MW机组汽轮机低压缸零出力技术[J].热力发电,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 |
CHEN J G, XIE Z X, FU H R,et al .Zero output technology of the low-pressure cylinder of 300 MW unit turbine[J].Thermal Power Generation,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 | |
19 | ZHAO X, LI A, ZHANG Y,et al .Performance improvement of low-pressure cylinder in high back pressure steam turbine for direct heating[J].Applied Thermal Engineering,2021,182:116170. doi:10.1016/j.applthermaleng.2020.116170 |
20 | 鄂志君,张利,杨帮宇,等 .低压缸零出力实现热电联产机组热电解耦与节能的理论研究[J].汽轮机技术,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 |
E Z J, ZHANG L, YANG B Y,et al .Theoretical study on heat-electricity decoupling and energy saving of low-pressure cylinder zero output renovation of heat and power cogeneration units[J].Turbine Technology,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 | |
21 | 张猛 .深度调峰工况下供热机组状态监测与控制优化[D].北京:华北电力大学,2020. |
ZHANG M .Condition monitoring and optimization of control system for heating units under deep peak load regulation[D].Beijing:North China Electric Power University,2020. | |
22 | CHEN H, XIAO Y, XU G,et al .Energy-saving mechanism and parametric analysis of the high back-pressure heating process in a 300 MW coal-fired combined heat and power unit[J].Applied Thermal Engineering,2019,149:829-840. doi:10.1016/j.applthermaleng.2018.12.001 |
23 | ZHAO S, DU X, GE Z,et al .Cascade utilization of flue gas waste heat in combined heat and power system with high back-pressure (CHP-HBP) [J].Energy Procedia,2016,104:27-31. doi:10.1016/j.egypro.2016.12.006 |
24 | 肖瑶 .高背压供热机组节能分析与运行优化[D].北京:华北电力大学,2019. |
XIAO Y .Energy-saving analysis and operation optimization of the high back-pressure heating process in a combined heat and power unit[D].Beijing:North China Electric Power University,2019. | |
25 | 郭小丹,胡三高,杨昆,等 .热泵回收电厂循环水余热利用问题研究[J].现代电力,2010,27(2):58-61. doi:10.3969/j.issn.1007-2322.2010.02.014 |
GUO X D, HU S G, YANG K,et al .Research on waste heat recovery of circulating water in power plant by heat pump technology[J].Modern Electric Power,2010,27(2):58-61. doi:10.3969/j.issn.1007-2322.2010.02.014 | |
26 | 吴佐莲,刘小春,王萌,等 .利用热泵技术回收热电厂余热的可行性与经济性分析[J].山东农业大学学报(自然科学版),2008,39(1):62-68. |
WU Z L, LIU X C, WANG M,et al .The feasibility and economy analysis of the usage of the heat pump technique to reclaim waste heat in heat power plant[J].Joumal of Shandong Agiculcural University (Natrural Science),2008,39(1):62-68. | |
27 | 张虎,巩志强 .两种热泵回收循环水热量的经济性分析[J].山东电力技术,2022,49(3):71-75. doi:10.3969/j.issn.1007-9904.2022.03.013 |
ZHANG H, GONG Z Q .Economic analysis on recycling water heat by two kinds of heat pump[J].Shandong Electric Power,2022,49(3):71-75. doi:10.3969/j.issn.1007-9904.2022.03.013 | |
28 | JIANG J, HU B, GE T,et al .Comprehensive selection and assessment methodology of compression heat pump system[J].Energy,2022,241:122831. doi:10.1016/j.energy.2021.122831 |
[1] | Zheng YANG, Yipeng SUN, Zhiqiang WEN, Liang CHENG, Zhanguo LI. Research on Dry-Wet Conversion Strategy of Supercritical Thermal Power Units Under Deep Peaking Condition [J]. Power Generation Technology, 2024, 45(2): 233-239. |
[2] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[3] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[4] | Zhongqiu LIU,Guozhu ZHANG,Yinchen QIU,Juntai ZHANG,Shan WANG,Ming LIU. Analyses on Heat-Power Decoupling Potential and Energy Consumption Characteristics for CHP Plant Integrated With Heat Pump [J]. Power Generation Technology, 2019, 40(3): 253-257. |
[5] | Yi LI. Heat Supply System of 2×300MW Units' Circulating Water Waste Heat [J]. Power Generation Technology, 2018, 39(3): 244-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||