Power Generation Technology ›› 2025, Vol. 46 ›› Issue (5): 923-929.DOI: 10.12096/j.2096-4528.pgt.23159
• New Energy • Previous Articles Next Articles
Long YANG1, Liming HAO1, Zhiwei XUN1, Yongzheng GU2, Fang YU3, Bowen DENG3, Tengfei GAO3
Received:2024-06-22
Revised:2024-08-29
Published:2025-10-31
Online:2025-10-23
Supported by:CLC Number:
Long YANG, Liming HAO, Zhiwei XUN, Yongzheng GU, Fang YU, Bowen DENG, Tengfei GAO. Study on Mechanism of CO2 Hydrogenation to Methanol Catalyzed by Mo-Doped Graphene[J]. Power Generation Technology, 2025, 46(5): 923-929.
| [1] | 饶庆平,郝建刚,白云山 .碳排放目标背景下我国天然气发电发展路径分析[J].发电技术,2022(3):468-475. doi:10.12096/j.2096-4528.pgt.21075 |
| RAO Q P, HAO J G, BAI Y S .Analysis on the development path of natural gas power generation in China under the background of carbon emission target[J].Power Generation Technology,2022(3):468-475. doi:10.12096/j.2096-4528.pgt.21075 | |
| [2] | 胡道成,王睿,赵瑞,等 .二氧化碳捕集技术及适用场景分析[J].发电技术,2023,43(3):468-475. |
| HU D C, WANG R, ZHAO R,et al .Research on carbon dioxide capture technology and suitable scenarios[J].Power Generation Technology,2023,43(3):468-475. | |
| [3] | SEMPUGA B C, YAO Y .CO2 hydrogenation from a process synthesis perspective:setting up process targets[J].Journal of CO2 Utilization,2017,20:34-42. doi:10.1016/j.jcou.2017.05.004 |
| [4] | WANG X, ZHANG H .Kinetically relevant variation triggered by hydrogen pressure:a mechanistic case study of CO2 hydrogenation to methanol over Cu/ZnO[J].Journal of Catalysis,2022,406:145-156. doi:10.1016/j.jcat.2021.12.034 |
| [5] | XIE G, JIN R, REN P,et al .Boosting CO2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts[J].Applied Catalysis B:Environmental,2023,324:122233. doi:10.1016/j.apcatb.2022.122233 |
| [6] | WANG Y, HE D, CHEN H,et al .Catalysts in electro-,photo- and photoelectrocatalytic CO2 reduction reactions[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2019,40:117-149. doi:10.1016/j.jphotochemrev.2019.02.002 |
| [7] | JIANG X, WANG X, NIE X,et al .CO2 hydrogenation to methanol on Pd-Cu bimetallic catalysts:H2/CO2 ratio dependence and surface species[J].Catalysis Today,2018,316:62-70. doi:10.1016/j.cattod.2018.02.055 |
| [8] | JANSE VAN RENSBURG W, PETERSEN M A, DATT M S,et al .On the kinetic interpretation of DFT-derived energy profiles:Cu-catalyzed methanol synthesis[J].Catalysis Letters,2015,145(2):559-568. doi:10.1007/s10562-014-1407-1 |
| [9] | ZHANG H, WANG X, LIU P .Reaction-driven selective CO2 hydrogenation to formic acid on Pd(111)[J].Physical Chemistry Chemical Physics,2022,24(28):16997-17003. doi:10.1039/d2cp01971j |
| [10] | CHABOT V, HIGGINS D, YU A,et al .A review of graphene and graphene oxide sponge:material synthesis and applications to energy and the environment[J].Energy & Environmental Science,2014,7(5):1564-1596. doi:10.1039/c3ee43385d |
| [11] | LEE Y, LEE S, HWANG Y,et al .Modulating magnetic characteristics of Pt embedded graphene by gas adsorption (N2,O2,NO2,SO2)[J].Applied Surface Science,2014,289:445-449. doi:10.1016/j.apsusc.2013.10.189 |
| [12] | MA L, ZHANG J M, XU K W,et al .A first-principles study on gas sensing properties of graphene and Pd-doped graphene[J].Applied Surface Science,2015,343:121-127. doi:10.1016/j.apsusc.2015.03.068 |
| [13] | LEN T, BAHRI M, ERSEN O,et al .Ultradispersed Mo/TiO2 catalysts for CO2 hydrogenation to methanol[J].Green Chemistry,2021,23(18):7259-7268. doi:10.1039/d1gc01761f |
| [14] | FAN Z, LIN B, LIU Y,et al .Immobilization of molybdenum-based complexes on dendrimer-functionalized graphene oxide and their catalytic activity for the epoxidation of alkenes[J].Catalysis Communications,2021,158:106341. doi:10.1016/j.catcom.2021.106341 |
| [15] | CHEN H Z, LIU J, MI T G,et al .Theoretical study on the hydrogenation of furfural for furfuryl alcohol production over low Ni modified Cu catalysts[J].Applied Surface Science,2023,613:156106. doi:10.1016/j.apsusc.2022.156106 |
| [16] | MI T G, WU Y W, XU M X,et al .Theoretical insights into the roles of active oxygen species in heterogeneous oxidation of CO over Mn/TiO2 catalyst[J].Applied Catalysis A:General,2021,616:118104. doi:10.1016/j.apcata.2021.118104 |
| [17] | LIU Y, ZHOU Y, YANG S,et al .A DFT study on enhanced adsorption of H2 on Be-decorated porous graphene nanosheet and the effects of applied electrical fields[J].International Journal of Hydrogen Energy,2021,46(7):5891-5903. doi:10.1016/j.ijhydene.2020.11.090 |
| [18] | BURGHAUS U .Surface chemistry of CO2-adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum[J].Progress in Surface Science,2014,89(2):161-217. doi:10.1016/j.progsurf.2014.03.002 |
| [19] | ESRAFILI M D, DINPARAST L .A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake[J].Chemical Physics Letters,2017,682:49-54. doi:10.1016/j.cplett.2017.06.011 |
| [20] | WU Z, QIN M, LIU Y,et al .Prediction of major impurities during MeOH synthesis over a Cu/ZnO/Al2O3 catalyst[J].Industrial & Engineering Chemistry Research,2017,56(49):14430-14436. doi:10.1021/acs.iecr.7b03170 |
| [21] | QIU M, TAO H, LI R,et al .Insight into the mechanism for the methanol synthesis via the hydrogenation of CO2 over a co-modified Cu(100) surface:a DFT study[J].The Journal of Chemical Physics,2016,145(13):134701. doi:10.1063/1.4963384 |
| [1] | Shimeng LU, Jianlin SUN, Fanjie ZENG, Xiaojie LIN, Junzhan WU, Tianyi MA, Wei ZHONG, Likun XIE, Wei XIE. Research Progress on Comprehensive Utilization Technologies of Zero-Carbon Geothermal Energy [J]. Power Generation Technology, 2025, 46(5): 909-922. |
| [2] | Wenjing WANG, Yixuan HAN, Jibin LI, Xiaoxu SHEN, Zhaoyi HUO, Lianghua FENG. Multi-Objective Optimization Analysis of Gas-Steam Combined Cycle Power Generation Systems [J]. Power Generation Technology, 2025, 46(4): 839-848. |
| [3] | Yongkang WANG, Jun YI, Xiaodi XIE. Review of Wind-Solar-Hydrogen-Ammonia-Methanol Integrated Technologies and Industry [J]. Power Generation Technology, 2025, 46(3): 556-569. |
| [4] | Kai MA, Zhi YUAN, Ji LI. Low-Carbon Economic Scheduling of Integrated Energy System Considering Diversified Utilization of Hydrogen Energy [J]. Power Generation Technology, 2025, 46(2): 263-273. |
| [5] | Ximing HU, Wenfeng DONG, Zhengrong WANG, Luchang SUN, Kailiang WANG, Chao LI, Mengxiang FANG, Zhifu LI. Study on Properties of Hydrophilic Modified Polypropylene Regular Filler by Melt Blending in Carbon Dioxide Capture Tower [J]. Power Generation Technology, 2025, 46(2): 296-303. |
| [6] | Zhongyuan HUANG, Xuliang JIN, Fanqin MENG, Aiming YIN, Li ZHANG, Shaoyun CHEN. Experimental and Application Research of Novel Polyamine-Based CO2 Absorbents in Gas-Fired Power Plants [J]. Power Generation Technology, 2025, 46(2): 304-313. |
| [7] | Yang ZHENG, Yucheng REN, Yuwei WANG, Dingji XU, Huimin YANG. Evaluation of Comprehensive Benefits of Electric Energy Substitution in Regional Power Grids Based on Improved Cloud Model [J]. Power Generation Technology, 2025, 46(2): 399-408. |
| [8] | Shanying HU, Yong JIN, Zhenye ZHANG. Developing New Quality Productive Forces to Achieve Carbon Neutrality [J]. Power Generation Technology, 2025, 46(1): 1-8. |
| [9] | Changling LI, Xiqiang CHANG, Hao LU. Analysis and Forecast of the Shift From Double Control of Energy Consumption to Double Control of Carbon Emissions in Xinjiang [J]. Power Generation Technology, 2024, 45(6): 1114-1120. |
| [10] | Sike SHAN, Hanxiao LIU, Meiling LIU, Shuai WANG, Ying CUI. Review of Carbon Footprint for Thermal Power Industry in China [J]. Power Generation Technology, 2024, 45(4): 575-589. |
| [11] | Zhenyu ZHAO, Geriletu BAO, Xinxin LI. Optimization and Scheduling of Integrated Energy Systems With Carbon Capture and Storage-Power to Gas Based on Information Gap Decision Theory [J]. Power Generation Technology, 2024, 45(4): 651-665. |
| [12] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
| [13] | Jiahai YUAN, Yuelin HU, Jian ZHANG. The Carbon Emission Efficiency of China’s Listed Thermal Power Companies: An Improved Three-Stage Slack Based Measure-Data Envelopment Analysis Model [J]. Power Generation Technology, 2024, 45(3): 458-467. |
| [14] | Yuhang SUN, Chao LI, Zhengrong WANG, Luchang SUN, Kailiang WANG, Ximing HU, Mengxiang FANG, Feng ZHANG. Study on CO2 Absorption and Regeneration Property of Flue Gas From Methyldiethanolamine-Amine Mixture System [J]. Power Generation Technology, 2024, 45(3): 468-477. |
| [15] | Xiuxiun HAN, Shaoxin WEI, Jian WANG, Chaojie CUI, Weizhong QIAN. Preparation and Performance Analysis of High Performance Cathode Material Graphene-Mesoporous Carbon Composites for Lithium-Ion Capacitor [J]. Power Generation Technology, 2024, 45(3): 494-507. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||