Power Generation Technology ›› 2025, Vol. 46 ›› Issue (2): 304-313.DOI: 10.12096/j.2096-4528.pgt.23157
• Carbon Neutrality • Previous Articles
Zhongyuan HUANG1, Xuliang JIN1, Fanqin MENG1, Aiming YIN1, Li ZHANG1, Shaoyun CHEN2
Received:
2024-03-02
Revised:
2024-07-01
Published:
2025-04-30
Online:
2025-04-23
Supported by:
CLC Number:
Zhongyuan HUANG, Xuliang JIN, Fanqin MENG, Aiming YIN, Li ZHANG, Shaoyun CHEN. Experimental and Application Research of Novel Polyamine-Based CO2 Absorbents in Gas-Fired Power Plants[J]. Power Generation Technology, 2025, 46(2): 304-313.
成分配比 | 命名 |
---|---|
27% DEEA+1% PZ+2% MEA | DT01-1 |
25% DEEA+3% PZ+2% MEA | DT01-2 |
23% DEEA+5% PZ+2% MEA | DT01-3 |
21% DEEA+7% PZ+2% MEA | DT01-4 |
19% DEEA+9% PZ+2% MEA | DT01-5 |
24% BDA+1% MDEA+5% AMP | DT02-1 |
22% BDA+3% MDEA+5% AMP | DT02-2 |
20% BDA+5% MDEA+5% AMP | DT02-3 |
18% BDA+7% MDEA+5% AMP | DT02-4 |
16% BDA+9% MDEA+5% AMP | DT02-5 |
Tab. 1 Composition ratios of different mixed amine absorbents
成分配比 | 命名 |
---|---|
27% DEEA+1% PZ+2% MEA | DT01-1 |
25% DEEA+3% PZ+2% MEA | DT01-2 |
23% DEEA+5% PZ+2% MEA | DT01-3 |
21% DEEA+7% PZ+2% MEA | DT01-4 |
19% DEEA+9% PZ+2% MEA | DT01-5 |
24% BDA+1% MDEA+5% AMP | DT02-1 |
22% BDA+3% MDEA+5% AMP | DT02-2 |
20% BDA+5% MDEA+5% AMP | DT02-3 |
18% BDA+7% MDEA+5% AMP | DT02-4 |
16% BDA+9% MDEA+5% AMP | DT02-5 |
参数 | DT01-5 | DT02-3 |
---|---|---|
烟气流量/(m3/h) | 2 500 | 2 890 |
洗涤塔入口烟气CO2体积分数/% | 4.42 | 4.45 |
洗涤塔入口烟气温度/℃ | <110.0 | <110.0 |
洗涤塔入口烟气压力/kPa | 3.0~5.0 | 3.0~5.0 |
吸收塔入口烟气温度/℃ | 40±2 | 40±2 |
吸收塔出口烟气温度/℃ | 50±2 | 50±2 |
再沸器低压蒸汽流量/(kg/h) | 350 | 362 |
再沸器低压蒸汽压力/MPa | 0.4 | 0.4 |
再沸器低压蒸汽温度/℃ | 150 | 150 |
吸收剂质量分数/% | 30 | 30 |
吸收剂循环流量/(m3/h) | 5.0 | 4.0 |
再生塔操作压力/kPa | 10 | 10 |
再生塔底温度/℃ | 103 | 104 |
Tab. 2 Key parameters of Gaojing carbon capture system
参数 | DT01-5 | DT02-3 |
---|---|---|
烟气流量/(m3/h) | 2 500 | 2 890 |
洗涤塔入口烟气CO2体积分数/% | 4.42 | 4.45 |
洗涤塔入口烟气温度/℃ | <110.0 | <110.0 |
洗涤塔入口烟气压力/kPa | 3.0~5.0 | 3.0~5.0 |
吸收塔入口烟气温度/℃ | 40±2 | 40±2 |
吸收塔出口烟气温度/℃ | 50±2 | 50±2 |
再沸器低压蒸汽流量/(kg/h) | 350 | 362 |
再沸器低压蒸汽压力/MPa | 0.4 | 0.4 |
再沸器低压蒸汽温度/℃ | 150 | 150 |
吸收剂质量分数/% | 30 | 30 |
吸收剂循环流量/(m3/h) | 5.0 | 4.0 |
再生塔操作压力/kPa | 10 | 10 |
再生塔底温度/℃ | 103 | 104 |
参数 | DT01-5 | DT02-3 | MEA |
---|---|---|---|
捕集率/% | 91.42 | 90.60 | 90.10 |
捕集量/(kg/h) | 185.18 | 221.10 | 218.90 |
蒸汽消耗/[kg/kg CO2)] | 1.78 | 1.61 | 2.65 |
再生热耗/[GJ/(t CO2)] | 3.65 | 3.29 | 5.44 |
电耗/[kW∙h/(t CO2)] | 88.14 | 81.97 | 97.75 |
除盐水耗/[t/(t CO2)] | 0.320 | 0.334 | 0.510 |
吸收剂消耗/[kg/(t CO2)] | 1.21 | 0.95 | 1.93 |
冷却水用量/[t/(t CO2)] | 198 | 210 | 247 |
Tab. 3 Operational performance of DT01-5 and DT02-3 absorbents
参数 | DT01-5 | DT02-3 | MEA |
---|---|---|---|
捕集率/% | 91.42 | 90.60 | 90.10 |
捕集量/(kg/h) | 185.18 | 221.10 | 218.90 |
蒸汽消耗/[kg/kg CO2)] | 1.78 | 1.61 | 2.65 |
再生热耗/[GJ/(t CO2)] | 3.65 | 3.29 | 5.44 |
电耗/[kW∙h/(t CO2)] | 88.14 | 81.97 | 97.75 |
除盐水耗/[t/(t CO2)] | 0.320 | 0.334 | 0.510 |
吸收剂消耗/[kg/(t CO2)] | 1.21 | 0.95 | 1.93 |
冷却水用量/[t/(t CO2)] | 198 | 210 | 247 |
项目 | 单位成本 | 运行成本/元 | ||
---|---|---|---|---|
DT01-5 | DT02-3 | MEA | ||
合计 | 327.77 | 291.52 | 442.65 | |
蒸汽 | 107.58元/t | 191.49 | 173.20 | 285.09 |
电力 | 0.604元/(kW∙h) | 53.24 | 49.51 | 59.03 |
除盐水 | 23.68元/t | 7.58 | 7.91 | 12.08 |
循环冷却水 | 0.10元/t | 19.81 | 21.01 | 24.69 |
吸收剂 | DT01-5:4.6万元/t DT02-3:4.2万元/t MEA:3.2万元/t | 55.66 | 39.9 | 61.76 |
Tab. 4 Operational costs of DT01-5 and DT02-3
项目 | 单位成本 | 运行成本/元 | ||
---|---|---|---|---|
DT01-5 | DT02-3 | MEA | ||
合计 | 327.77 | 291.52 | 442.65 | |
蒸汽 | 107.58元/t | 191.49 | 173.20 | 285.09 |
电力 | 0.604元/(kW∙h) | 53.24 | 49.51 | 59.03 |
除盐水 | 23.68元/t | 7.58 | 7.91 | 12.08 |
循环冷却水 | 0.10元/t | 19.81 | 21.01 | 24.69 |
吸收剂 | DT01-5:4.6万元/t DT02-3:4.2万元/t MEA:3.2万元/t | 55.66 | 39.9 | 61.76 |
1 | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
XU H H, SHAO G P, E C L,et al .Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
2 | 冯伟忠,李励 .“双碳” 目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. |
FENG W Z, LI L .Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under “double carbon” targets[J].Power Generation Technology,2022,43(3):452-461. | |
3 | 魏震波,杨超,李银江 .参与多元耦合市场的电-气综合能源系统低碳经济调度[J].智慧电力,2023,51(5):8-14. |
WEI Z B, YANG C, LI Y J .Low-carbon economic dispatch of electricity-gas integrated energy systems participating in multiple markets[J].Smart Power,2023,51(5):8-14. | |
4 | 景强,杨澄宇,宋建珂,等 .中国燃煤电厂二氧化碳捕集研究进展[J].电力科技与环保,2025,41(1):77-85. |
JING Q, YANG C Y, SONG J K,et al .Review on carbon dioxide capture of coal-fired power plants in China[J].Electric Power Technology and Environmental Protection,2025,41(1):77-85. | |
5 | 钟依庐,刘为雄,郑赟,等 .风火储氢碳多能耦合打捆送出模式研究[J].南方能源建设,2023,10(4):122-130. |
ZHONG Y L, LIU W X, ZHENG Y,et al .Electricity transmission strategy research based on wind-coal-battery-hydrogen-CCUS multi energy coupling and bundling system[J].Southern Energy Construction,2023,10(4):122-130. | |
6 | 王金意,牛红伟,刘练波,等 .燃煤电厂烟气新型CO2吸收剂开发与工程应用[J].热力发电,2021,50(1):54-61. |
WANG J Y, NIU H W, LIU L B,et al .Development and engineering application of new absorption solvent for CO2 capture from flue gas of coal-fired power plant[J].Thermal Power Generation,2021,50(1):54-61. | |
7 | 刘珍珍,方梦祥,夏芝香,等 .基于高浓度MEA的CO2化学吸收工艺优化[J].中国电机工程学报,2021,41(11):3666-3676. |
LIU Z Z, FANG M X, XIA Z X,et al .Optimization of CO2 chemical absorption process based on high concentration MEA[J].Proceedings of the CSEE,2021,41(11):3666-3676. | |
8 | 袁鑫,刘骏,陈衡,等 .碳捕集技术应用对燃煤机组调峰能力的影响[J].发电技术,2024,45(3):373-381. |
YUAN X, LIU J, CHEN H,et al .Effect of carbon capture technology application on peak shaving capacity of coal-fired units[J].Power Generation Technology,2024,45(3):373-381. | |
9 | 张蕾,邢大勇,芦玉铎,等 .新型吸收剂捕集燃气电厂烟气中二氧化碳的中试研究[J].分布式能源,2023,8(4):55-62. |
ZHANG L, XING D Y, LU Y D,et al .Pilot study on a new absorbent captures carbon dioxide in flue gas of gas-fired power plant[J].Distributed Energy,2023,8(4):55-62. | |
10 | CHEN P C, CHO H H, JHUANG J H,et al .Selection of mixed amines in the CO2 capture process[J].C‑Journal of Carbon Research,2021,7(1):25. doi:10.3390/c7010025 |
11 | LIU F, FANG M, YI N,et al .Biphasic behaviors and regeneration energy of a 2-(diethylamino)-ethanol and 2-((2-aminoethyl)amino) ethanol blend for CO2 capture[J].Sustainable Energy & Fuels,2019,3(12):3594-3602. doi:10.1039/c9se00821g |
12 | 林海周,罗海中,裴爱国,等 .燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J].化工进展,2019,38(4):2046-2055. |
LIN H Z, LUO H Z, PEI A G,et al .Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant[J].Chemical Industry and Engineering Progress,2019,38(4):2046-2055. | |
13 | BUI M, GUNAWAN I, VERHEYEN V,et al .Flexible operation of CSIRO’s post-combustion CO2 capture pilot plant at the AGL Loy Yang power station[J].International Journal of Greenhouse Gas Control,2016,48:188-203. doi:10.1016/j.ijggc.2015.12.016 |
14 | 胡道成,王睿,赵瑞,等 .二氧化碳捕集技术及适用场景分析[J].发电技术,2023,44(4):502-513. doi:10.12096/j.2096-4528.pgt.22056 |
HU D C, WANG R, ZHAO R,et al .Research on carbon dioxide capture technology and suitable scenarios[J].Power Generation Technology,2023,44(4):502-513. doi:10.12096/j.2096-4528.pgt.22056 | |
15 | PEETERS A N M, FAAIJ A P C, TURKENBURG W C .Techno-economic analysis of natural gas combined cycles with post-combustion CO2 absorption,including a detailed evaluation of the development potential[J].International Journal of Greenhouse Gas Control,2007,1(4):396-417. doi:10.1016/s1750-5836(07)00068-0 |
16 | SIPÖCZ N, TOBIESEN F A .Natural gas combined cycle power plants with CO2 capture-Opportunities to reduce cost[J].International Journal of Greenhouse Gas Control,2012,7:98-106. doi:10.1016/j.ijggc.2012.01.003 |
17 | 张治忠,陈继平,谭学谦,等 .天然气联合循环电厂燃烧后CO2捕集一体化技术经济评价[J].南方能源建设,2023,10(2):55-61. doi:10.16516/j.gedi.issn2095-8676.2023.02.008 |
ZHANG Z Z, CHEN J P, TAN X Q,et al .Economic evaluation of post-combustion CO2 capture integration technology in natural gas combined cycle power plant[J].Southern Energy Construction,2023,10(2):55-61. doi:10.16516/j.gedi.issn2095-8676.2023.02.008 | |
18 | 王旭,杨昊,王满仓,等 .燃气电厂化学吸收二氧化碳捕获系统运行参数与能耗分析[J].分布式能源,2023,8(5):69-76. |
WANG X, YANG H, WANG M C,et al .Analysis of operating parameters and energy consumption of chemical absorption carbon dioxide capture system in natural gas power plants[J].Distributed Energy,2023,8(5):69-76. | |
19 | 黄忠源 .天然气-蒸汽联合循环电厂CO2捕获及系统集成研究[D].北京:北京交通大学,2018. doi:10.3390/en11113055 |
HUANG Z Y .Study on CO2 capture of nature gas combined cycle power plant and system integration[D].Beijing:Beijing Jiaotong University,2018. doi:10.3390/en11113055 | |
20 | DU Y, LI L, NAMJOSHI O,et al. Aqueous piperazine/N-(2-aminoethyl) piperazine for CO2 capture[J].Energy Procedia,2013,37:1621-1638. doi:10.1016/j.egypro.2013.06.038 |
21 | XU Z, WANG S, CHEN C .CO2 absorption by biphasic solvents:mixtures of 1,4-butanediamine and 2-(diethylamino)-ethanol[J].International Journal of Greenhouse Gas Control,2013,16:107-115. doi:10.1016/j.ijggc.2013.03.013 |
22 | XU Z, WANG S, CHEN C .Kinetics study on CO2 absorption with aqueous solutions of 1,4-butanediamine,2-(diethylamino)-ethanol,and their mixtures[J].Industrial & Engineering Chemistry Research,2013,52(29):9790-9802. doi:10.1021/ie4012936 |
23 | CROOKS J E, DONNELLAN J P .Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution[J].Journal of the Chemical Society,Perkin Transactions 2,1989(4):331. doi:10.1039/p29890000331 |
24 | LI J, HENNI A, TONTIWACHWUTHIKUL P .Reaction kinetics of CO2 in aqueous ethylenediamine,ethyl ethanolamine,and diethyl monoethanolamine solutions in the temperature range of 298-313 K,using the stopped-flow technique[J].Industrial & Engineering Chemistry Research,2007,46(13):4426-4434. doi:10.1021/ie0614982 |
25 | SAHA A K, BANDYOPADHYAY S S, BISWAS A K .Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol[J].Chemical Engineering Science,1995,50(22):3587-3598. doi:10.1016/0009-2509(95)00187-a |
26 | KNIPE J M, CHAVEZ K P, HORNBOSTEL K M,et al .Evaluating the performance of micro-encapsulated CO2 sorbents during CO2 absorption and regeneration cycling[J].Environmental Science & Technology,2019,53(5):2926-2936. doi:10.1021/acs.est.8b06442 |
27 | NWAOHA C, IDEM R, SUPAP T,et al .Heat duty,heat of absorption,sensible heat and heat of vaporization of 2-amino-2-methyl-1-propanol (AMP),piperazine (PZ) and monoethanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture[J].Chemical Engineering Science,2017,170:26-35. doi:10.1016/j.ces.2017.03.025 |
28 | ARTANTO Y, JANSEN J, PEARSON P,et al .Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal-fired power station[J].International Journal of Greenhouse Gas Control,2014,20:189-195. doi:10.1016/j.ijggc.2013.11.002 |
29 | CLOSMANN F, NGUYEN T, ROCHELLE G T .MDEA/Piperazine as a solvent for CO2 capture[J].Energy Procedia,2009,1(1):1351-1357. doi:10.1016/j.egypro.2009.01.177 |
30 | NWAOHA C, SAIWAN C, TONTIWACHWUTHIKUL P,et al .Carbon dioxide (CO2) capture:absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP),piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends[J].Journal of Natural Gas Science and Engineering,2016,33:742-750. doi:10.1016/j.jngse.2016.06.002 |
31 | SUTAR P N, VAIDYA P D, KENIG E Y .Activated DEEA solutions for CO2 capture:a study of equilibrium and kinetic characteristics[J].Chemical Engineering Science,2013,100:234-241. doi:10.1016/j.ces.2012.11.038 |
32 | ZHANG R, LIANG Z, LIU H,et al .Study of formation of bicarbonate ions in CO2-loaded aqueous single 1DMA2P and MDEA tertiary amines and blended MEA-1DMA2P and MEA-MDEA amines for low heat of regeneration[J].Industrial & Engineering Chemistry Research,2016,55(12):3710-3717. doi:10.1021/acs.iecr.5b03097 |
33 | KIERZKOWSKA-PAWLAK H .Kinetics of CO2 absorption in aqueous N,N-diethylethanolamine and its blend with N-(2-aminoethyl)ethanolamine using a stirred cell reactor[J].International Journal of Greenhouse Gas Control,2015,37:76-84. doi:10.1016/j.ijggc.2015.03.002 |
34 | GAO H, RONGWONG W, PENG C,et al .Thermal and oxidative degradation of aqueous N,N-diethylethanolamine (DEEA) at stripping conditions for CO2 capture[J].Energy Procedia,2014,63:1911-1918. doi:10.1016/j.egypro.2014.11.200 |
35 | BAYATI B, MIRSHEKARI M, VEISY A,et al .Removal of HSS from industrial amine solution by anionic resin (case study:ilam gas refinery)[J]. Chemical Papers, 2019,73:491-500. doi:10.1007/s11696-018-0598-0 |
[1] | Ximing HU, Wenfeng DONG, Zhengrong WANG, Luchang SUN, Kailiang WANG, Chao LI, Mengxiang FANG, Zhifu LI. Study on Properties of Hydrophilic Modified Polypropylene Regular Filler by Melt Blending in Carbon Dioxide Capture Tower [J]. Power Generation Technology, 2025, 46(2): 296-303. |
[2] | Haibao ZHAO, Yuzhong HE, Hanxiao LIU, Jiang LIANG. Improvement and Engineering Application on Pulse Power Supply of Electrostatic Precipitator in Coal-Fired Power Plant [J]. Power Generation Technology, 2025, 46(1): 154-160. |
[3] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[4] | Huanjun WANG, Niu LIU, Zhaofang ZHENG, Xia XING, Shiwang GAO, Lianbo LIU, Hongwei NIU, Dongfang GUO. Research Progress of Materials for Direct Capture of CO2 From Ambient Air [J]. Power Generation Technology, 2022, 43(4): 533-543. |
[5] | Guohua QIU,Hongge WEI,Xiujin LIANG,Zhuang LI,Fengji WANG,Yue ZHU. Energy Consumption Analysis of Desulphurization Ultra-low Emission Operation and Outlook on Its Energy-saving Operation in Thermal Power Plants [J]. Power Generation Technology, 2020, 41(5): 510-516. |
[6] | Hechun WU,Wenjun SHAN,Fujun LIU,Zhongbo GUO,Yuhua WEI,Yong HU,Zhaoyu JIANG,Feng XIE. Design and Application of High Reliability Intelligent Pressure Switch [J]. Power Generation Technology, 2019, 40(5): 503-508. |
[7] | QIN Dachuan, LI Wei. The Application Study of Optimization for the Circulating Water Pump in a 330MW Unit [J]. Power Generation Technology, 2017, 38(6): 34-37. |
[8] | WEI Hongge, ZHANG Yang, DU Zhen, ZHU Yue. Analysis of Coal-fired Unit Ultra Low Emission Retrofit's Influence on Unit's Energy Consumption Increasing and Its Energy-saving, Optimization Methods [J]. Power Generation Technology, 2017, 38(6): 14-17,33. |
[9] | ZHANG Wu-zhi, CHEN Guo-song. Frequency Conversion of Electric Feed Water Pump with Front Pump [J]. Power Generation Technology, 2017, 38(2): 46-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||