Power Generation Technology ›› 2024, Vol. 45 ›› Issue (5): 929-940.DOI: 10.12096/j.2096-4528.pgt.22144
• Power Generation and Environmental Protection • Previous Articles
Qiwei ZHENG, Xinyue ZHAO, Di LU, Heng CHEN, Peiyuan PAN, Tong LIU
Received:
2023-06-26
Revised:
2023-09-30
Published:
2024-10-31
Online:
2024-10-29
Supported by:
CLC Number:
Qiwei ZHENG, Xinyue ZHAO, Di LU, Heng CHEN, Peiyuan PAN, Tong LIU. Comparative Evaluation of Thermoelectric Decoupling Potential and Economy of Multi-Type Small Capacity Thermal Power Units[J]. Power Generation Technology, 2024, 45(5): 929-940.
参数 | 1#机组 | 2#机组 | 3#机组 |
---|---|---|---|
主蒸汽温度/℃ | 535 | 535 | 535 |
主蒸汽压力/MPa | 8.83 | 9.50 | 8.83 |
主蒸汽流量/(kg⋅s-1) | 39.31 | 28.39 | 28.22 |
额定背压/MPa | 0.300 | 0.022 | 0.018 |
给水温度/℃ | 216.34 | 223.90 | 272.20 |
额定功率/kW | 25 071.6 | 25 000.00 | 25 004.02 |
热耗/[kJ/(kW⋅h)] | 3 774.5 | 10 238.1 | 10 450.3 |
Tab. 1 Case unit thermal parameters
参数 | 1#机组 | 2#机组 | 3#机组 |
---|---|---|---|
主蒸汽温度/℃ | 535 | 535 | 535 |
主蒸汽压力/MPa | 8.83 | 9.50 | 8.83 |
主蒸汽流量/(kg⋅s-1) | 39.31 | 28.39 | 28.22 |
额定背压/MPa | 0.300 | 0.022 | 0.018 |
给水温度/℃ | 216.34 | 223.90 | 272.20 |
额定功率/kW | 25 071.6 | 25 000.00 | 25 004.02 |
热耗/[kJ/(kW⋅h)] | 3 774.5 | 10 238.1 | 10 450.3 |
参数 | #1机组 | #2机组 | #3机组 | ||||||
---|---|---|---|---|---|---|---|---|---|
设计值 | 计算值 | 相对误差/% | 设计值 | 计算值 | 相对误差/% | 设计值 | 计算值 | 相对误差/% | |
主蒸汽温度/℃ | 535.00 | 535.00 | 0.00 | 535.00 | 535.00 | 0.00 | 535.00 | 535.00 | 0.00 |
主蒸汽压力/MPa | 8.83 | 8.83 | 0.00 | 9.50 | 9.50 | 0.00 | 8.83 | 8.83 | 0.00 |
主蒸汽流量/(kg⋅s-1) | 141.50 | 141.50 | 0.00 | 102.22 | 102.22 | 0.00 | 101.60 | 101.60 | 0.00 |
额定背压/kPa | 300.00 | 300.00 | 0.00 | 22.00 | 22.00 | 0.00 | 18.00 | 18.00 | 0.00 |
给水温度/℃ | 216.34 | 216.67 | 0.15 | 223.90 | 218.95 | -2.21 | 210.00 | 216.67 | 3.18 |
额定功率/kW | 25 071.60 | 25 324.40 | 1.01 | 25 000.00 | 25 425.00 | 1.70 | 25 004.02 | 25 324.40 | 1.28 |
热耗/[kJ⋅(kW⋅h)-1] | 3 774.50 | 3 644.20 | -3.45 | 10 238.10 | 10 164.82 | -0.72 | 10 450.27 | 10 056.66 | -3.77 |
Tab. 2 Model verification results
参数 | #1机组 | #2机组 | #3机组 | ||||||
---|---|---|---|---|---|---|---|---|---|
设计值 | 计算值 | 相对误差/% | 设计值 | 计算值 | 相对误差/% | 设计值 | 计算值 | 相对误差/% | |
主蒸汽温度/℃ | 535.00 | 535.00 | 0.00 | 535.00 | 535.00 | 0.00 | 535.00 | 535.00 | 0.00 |
主蒸汽压力/MPa | 8.83 | 8.83 | 0.00 | 9.50 | 9.50 | 0.00 | 8.83 | 8.83 | 0.00 |
主蒸汽流量/(kg⋅s-1) | 141.50 | 141.50 | 0.00 | 102.22 | 102.22 | 0.00 | 101.60 | 101.60 | 0.00 |
额定背压/kPa | 300.00 | 300.00 | 0.00 | 22.00 | 22.00 | 0.00 | 18.00 | 18.00 | 0.00 |
给水温度/℃ | 216.34 | 216.67 | 0.15 | 223.90 | 218.95 | -2.21 | 210.00 | 216.67 | 3.18 |
额定功率/kW | 25 071.60 | 25 324.40 | 1.01 | 25 000.00 | 25 425.00 | 1.70 | 25 004.02 | 25 324.40 | 1.28 |
热耗/[kJ⋅(kW⋅h)-1] | 3 774.50 | 3 644.20 | -3.45 | 10 238.10 | 10 164.82 | -0.72 | 10 450.27 | 10 056.66 | -3.77 |
方案 | 煤耗率/[kg⋅(kW⋅h-1)] | 日净利润/万元 | ||||
---|---|---|---|---|---|---|
5 MW供热 | 50%供热 | 原最大供热 | 5 MW供热 | 50%供热 | 原最大供热 | |
#1案例 | 532.17 | 603.11 | 724.91 | 472.28 | 410.54 | 259.76 |
#1低零 | 558.88 | 631.07 | 754.14 | 410.74 | 346.13 | 165.19 |
#1高背 | 653.90 | 711.27 | 798.78 | -120.19 | -60.98 | -20.17 |
#1热泵 | 496.69 | 563.01 | 671.40 | 648.71 | 597.75 | 476.94 |
#2案例 | 384.75 | 419.42 | 480.57 | 784.45 | 679.03 | 514.56 |
#2低零 | 439.04 | 469.25 | 523.76 | 456.57 | 403.94 | 302.06 |
#2高背 | 389.99 | 420.95 | 475.04 | 768.64 | 693.80 | 563.16 |
#2热泵 | 358.60 | 391.78 | 448.39 | 987.37 | 885.38 | 716.81 |
#3案例 | 386.69 | 459.01 | 630.02 | 803.70 | 570.79 | 73.78 |
#3低零 | 713.19 | 778.70 | 896.37 | -688.77 | -726.56 | -834.60 |
#3高背 | 408.82 | 481.37 | 647.16 | 664.70 | 455.65 | 8.73 |
#3热泵 | 382.98 | 454.72 | 623.53 | 826.76 | 593.24 | 99.91 |
Tab. 3 Unit daily profit
方案 | 煤耗率/[kg⋅(kW⋅h-1)] | 日净利润/万元 | ||||
---|---|---|---|---|---|---|
5 MW供热 | 50%供热 | 原最大供热 | 5 MW供热 | 50%供热 | 原最大供热 | |
#1案例 | 532.17 | 603.11 | 724.91 | 472.28 | 410.54 | 259.76 |
#1低零 | 558.88 | 631.07 | 754.14 | 410.74 | 346.13 | 165.19 |
#1高背 | 653.90 | 711.27 | 798.78 | -120.19 | -60.98 | -20.17 |
#1热泵 | 496.69 | 563.01 | 671.40 | 648.71 | 597.75 | 476.94 |
#2案例 | 384.75 | 419.42 | 480.57 | 784.45 | 679.03 | 514.56 |
#2低零 | 439.04 | 469.25 | 523.76 | 456.57 | 403.94 | 302.06 |
#2高背 | 389.99 | 420.95 | 475.04 | 768.64 | 693.80 | 563.16 |
#2热泵 | 358.60 | 391.78 | 448.39 | 987.37 | 885.38 | 716.81 |
#3案例 | 386.69 | 459.01 | 630.02 | 803.70 | 570.79 | 73.78 |
#3低零 | 713.19 | 778.70 | 896.37 | -688.77 | -726.56 | -834.60 |
#3高背 | 408.82 | 481.37 | 647.16 | 664.70 | 455.65 | 8.73 |
#3热泵 | 382.98 | 454.72 | 623.53 | 826.76 | 593.24 | 99.91 |
方案 | 能源利用率/% | 㶲效率/% | ||||
---|---|---|---|---|---|---|
5 MW供热 | 50% 供热 | 原最大供热 | 5 MW供热 | 50% 供热 | 原最大供热 | |
#1案例 | 27.50 | 41.49 | 59.15 | 24.81 | 28.67 | 33.55 |
#1低零改造 | 26.51 | 41.10 | 59.05 | 23.75 | 27.97 | 33.31 |
#1高背改造 | 23.28 | 38.89 | 58.67 | 18.57 | 23.79 | 30.43 |
#1热泵改造 | 29.13 | 43.45 | 61.59 | 23.08 | 27.03 | 32.04 |
#2案例 | 38.16 | 47.99 | 62.68 | 33.86 | 35.03 | 36.69 |
#2低零改造 | 34.28 | 44.85 | 60.84 | 29.91 | 31.93 | 34.99 |
#2高背改造 | 30.70 | 40.92 | 56.21 | 31.21 | 32.81 | 35.23 |
#2热泵改造 | 40.24 | 50.00 | 64.62 | 32.95 | 34.11 | 35.87 |
#3案例 | 38.03 | 47.92 | 62.11 | 34.31 | 35.42 | 36.90 |
#3低零改造 | 23.47 | 36.86 | 56.09 | 19.77 | 24.39 | 31.03 |
#3高背改造 | 36.24 | 46.54 | 61.28 | 32.41 | 33.97 | 36.12 |
#3热泵改造 | 38.26 | 48.04 | 62.45 | 34.23 | 35.35 | 36.85 |
Tab. 4 Model calculation results
方案 | 能源利用率/% | 㶲效率/% | ||||
---|---|---|---|---|---|---|
5 MW供热 | 50% 供热 | 原最大供热 | 5 MW供热 | 50% 供热 | 原最大供热 | |
#1案例 | 27.50 | 41.49 | 59.15 | 24.81 | 28.67 | 33.55 |
#1低零改造 | 26.51 | 41.10 | 59.05 | 23.75 | 27.97 | 33.31 |
#1高背改造 | 23.28 | 38.89 | 58.67 | 18.57 | 23.79 | 30.43 |
#1热泵改造 | 29.13 | 43.45 | 61.59 | 23.08 | 27.03 | 32.04 |
#2案例 | 38.16 | 47.99 | 62.68 | 33.86 | 35.03 | 36.69 |
#2低零改造 | 34.28 | 44.85 | 60.84 | 29.91 | 31.93 | 34.99 |
#2高背改造 | 30.70 | 40.92 | 56.21 | 31.21 | 32.81 | 35.23 |
#2热泵改造 | 40.24 | 50.00 | 64.62 | 32.95 | 34.11 | 35.87 |
#3案例 | 38.03 | 47.92 | 62.11 | 34.31 | 35.42 | 36.90 |
#3低零改造 | 23.47 | 36.86 | 56.09 | 19.77 | 24.39 | 31.03 |
#3高背改造 | 36.24 | 46.54 | 61.28 | 32.41 | 33.97 | 36.12 |
#3热泵改造 | 38.26 | 48.04 | 62.45 | 34.23 | 35.35 | 36.85 |
1 | 彭道刚,税纪钧,王丹豪,等 .“双碳”背景下虚拟电厂研究综述[J].发电技术,2023,44(5):602-615. |
PENG D G, SHUI J J, WANG D H,et al .Review of virtual power plant under the background of “dual carbon”[J].Power Generation Technology,2023,44(5):602-615. | |
2 | 宣文博,李慧,刘忠义,等 .一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J].发电技术,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 |
XUAN W B, LI H, LIU Z Y,et al .A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J].Power Generation Technology,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 | |
3 | 杨秀,杜楠楠,孙改平,等 .考虑需求响应的虚拟电厂双层优化调度[J].电力科学与技术学报,2022,37(2):137-146. |
YANG X, DU N N, SUN G P,et al .Bi-level optimization dispatch of virtual power plants considering the demand response[J].Journal of Electric Power Science and Technology,2022,37(2):137-146. | |
4 | 刘华锋,文福拴 .计及风险约束的虚拟电厂二阶段最优调度策略研究[J].智慧电力,2022,50(12):63-69. doi:10.3969/j.issn.1673-7598.2022.12.011 |
LIU H F, WEN F S .Two-stage optimal scheduling strategy for virtual power plants considering risk constraints[J].Smart Power,2022,50(12):63-69. doi:10.3969/j.issn.1673-7598.2022.12.011 | |
5 | 张云飞,周强,丁戈,等 .考虑多源相关不确定性的乡村虚拟电厂自治优化运行[J].广东电力,2023,36(10):47-56. |
ZHANG Y F, ZHOU Q, DING G,et al .Autonomous optimal operation of rural virtual power plants considering multisource correlation uncertainties[J].Guangdong Electric Power,2023,36(10):47-56. | |
6 | 黄勤坤,邱瑜,王飞,等 .考虑多重不确定性的虚拟电厂随机优化调度[J] .电网与清洁能源,2022,38(11):8-16. doi:10.3969/j.issn.1674-3814.2022.11.002 |
HUANG Q K, QIU Y, WANG F,et al .Stochastic optimal scheduling of virtual power plants considering multiple uncertainties[J] .Power System and Clean Energy,2022,38(11):8-16. doi:10.3969/j.issn.1674-3814.2022.11.002 | |
7 | 李媛 .虚拟电厂优化调度与运行仿真研究[D].北京:华北电力大学,2021. |
LI Y .Research on optimal scheduling and operation simulation of virtual power plant[D].Beijing:North China Electric Power University,2021. | |
8 | 朱泓逻 .基于Ebsilon的火电厂热力系统建模、监测及优化研究[D].北京:清华大学,2015. |
ZHU H L .Research on thermal system modeling,monitoring and optimization of thermal power plant based on Ebsilon[D].Beijing:Tsinghua University,2015. | |
9 | 唐树芳,王丰吉,唐郭安,等 .200 MW热电联产机组火电灵活性供热改造分析[J].工程技术研究,2022(6):110-112. |
TANG S F, WANG F J, TANG G A,et al .Analysis of thermal power flexible heating retrofit for 200 MW cogeneration units[J].Engineering and Technological Research,2022(6):110-112. | |
10 | 薛永明,池晓,张秋丹 .电厂循环冷却水余热供暖方式的经济性分析[C]//2019供热工程建设与高效运行研讨会.苏州:中国市政工程华北设计研究总院,2019:125-128. |
XUE Y M, CHI X, ZHANG Q D .Economic analysis of heating methods for circulating cooling water waste heat in power plants[C]//2019 Symposium on Heating Engineering Construction and Efficient Operation.Suzhou:China North China Design and Research Institute of Municipal Engineering,2019:125-128. | |
11 | LIU M, MA G, WANG S,et al .Thermo-economic comparison of heat-power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub[J].Renewable and Sustainable Energy Reviews,2021,152:111715. doi:10.1016/j.rser.2021.111715 |
12 | 陈建国,谢争先,付怀仁,等 .300 MW机组汽轮机低压缸零出力技术[J].热力发电,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 |
CHEN J G, XIE Z X, FU H R,et al .Zero output technology of the low-pressure cylinder of 300 MW unit turbine[J].Thermal Power Generation,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 | |
13 | ZHAO X, LI A, ZHANG Y,et al .Performance improvement of low-pressure cylinder in high back pressure steam turbine for direct heating[J].Applied Thermal Engineering,2021,182:116170. doi:10.1016/j.applthermaleng.2020.116170 |
14 | 鄂志君,张利,杨帮宇,等 .低压缸零出力实现热电联产机组热电解耦与节能的理论研究[J].汽轮机技术,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 |
E Z J, ZHANG L, YANG B Y,et al .Theoretical study on heat-electricity decoupling and energy saving of low-pressure cylinder zero output renovation of heat and power cogeneration units[J].Turbine Technology,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 | |
15 | 张猛 .深度调峰工况下供热机组状态监测与控制优化[D].北京:华北电力大学,2020. |
ZHANG M .Condition monitoring and control optimization of heating units under deep peak shaving conditions[D].Beijing:North China Electric Power University,2020. | |
16 | CHEN H, XIAO Y, XU G,et al .Energy-saving mechanism and parametric analysis of the high back-pressure heating process in a 300 MW coal-fired combined heat and power unit[J].Applied Thermal Engineering,2019,149:829-840. doi:10.1016/j.applthermaleng.2018.12.001 |
17 | ZHAO S, DU X, GE Z,et al .Cascade utilization of flue gas waste heat in combined heat and power system with high back-pressure[J].Energy Procedia,2016,104:27-31. doi:10.1016/j.egypro.2016.12.006 |
18 | 肖瑶 .高背压供热机组节能分析与运行优化[D].北京:华北电力大学,2019. |
XIAO Y .Energy saving analysis and operation optimization of high back pressure heating unit[D].Beijing:North China Electric Power University,2019. | |
19 | 郭小丹,胡三高,杨昆,等 .热泵回收电厂循环水余热利用问题研究[J].现代电力,2010,27(2):58-61. doi:10.3969/j.issn.1007-2322.2010.02.014 |
GUO X D, HU S G, YANG K,et al .Research on waste heat recovery of circulating water in power plant by heat pump technology[J].Modern Electric Power,2010,27(2):58-61. doi:10.3969/j.issn.1007-2322.2010.02.014 | |
20 | 吴佐莲,刘小春,王萌,等 .利用热泵技术回收热电厂余热的可行性与经济性分析[J].山东农业大学学报(自然科学版),2008,39(1):62-68. |
WU Z L, LIU X C, WANG M,et al .The feasibility and economy analysis of the usage of the heat pump technique to reclaim waste heat in heat power plant[J].Journal of Shandong Agricultural University (Natural Science Edition),2008,39(1):62-68. | |
21 | 张虎,巩志强 .两种热泵回收循环水热量的经济性分析[J].山东电力技术,2022,49(3):71-75. doi:10.3969/j.issn.1007-9904.2022.03.013 |
ZHANG H, GONG Z Q .Economic analysis on recycling water heat by two kinds of heat pump[J].Shandong Electric Power,2022,49(3):71-75. doi:10.3969/j.issn.1007-9904.2022.03.013 | |
22 | JIANG J, HU B, GE T,et al .Comprehensive selection and assessment methodology of compression heat pump system[J].Energy,2022,241:122831. doi:10.1016/j.energy.2021.122831 |
23 | 王子杰,顾煜炯,刘浩晨,等 .热电联产机组热电解耦技术对比分析[J].化工进展,2022,41(7):3564-3572. |
WANG Z J, GU Y J, LIU H C,et al .Comparison and analysis of heat-power decoupling technologies for CHP units[J].Chemical Industry and Engineering Progress,2022,41(7):3564-3572. | |
24 | 田亮,汪可 .低压缸零出力条件下电锅炉和高低旁路抽汽供热的经济性与灵活性分析[J].华北电力大学学报(自然科学版),2023,50(6):85-92. |
TIAN L, WANG K .Economic and flexibility analysis of electric boiler and HP-LP bypass steam extraction heating under zero-output condition of low pressure cylinder[J].Journal of North China Electric Power University (Natural Science Edition),2023,50(6):85-92. |
[1] | Tingting XIE, Youyuan SUN, Zhen GUO, Mingguang SONG. Summary of Research and Application of Continuous Monitoring Technology for Carbon Emissions From Thermal Power Units [J]. Power Generation Technology, 2024, 45(5): 919-928. |
[2] | Guichao DUAN, Gong WANG, Shengxian CAO, Jie DUAN. Research on Operation Strategy of Virtual Power Plant and Distributed Control of DG [J]. Power Generation Technology, 2024, 45(4): 765-771. |
[3] | Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit [J]. Power Generation Technology, 2024, 45(3): 401-411. |
[4] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[5] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[6] | Qiwei ZHENG, Huating WANG, Heng CHEN, Peiyuan PAN, Gang XU. Analysis on Thermoelectric Decoupling Technology Paths for Thermal Power Units Under the Background of Deep Peak-Shaving [J]. Power Generation Technology, 2024, 45(2): 207-215. |
[7] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[8] | Zheng YANG, Yipeng SUN, Zhiqiang WEN, Liang CHENG, Zhanguo LI. Research on Dry-Wet Conversion Strategy of Supercritical Thermal Power Units Under Deep Peaking Condition [J]. Power Generation Technology, 2024, 45(2): 233-239. |
[9] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
[10] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
[11] | Songyuan YU, Junsong ZHANG, Zhiwei YUAN, Fang FANG. Resilience Enhancement Strategy of Combined Heat and Power-Virtual Power Plant Considering Thermal Inertia [J]. Power Generation Technology, 2023, 44(6): 758-768. |
[12] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[13] | Zhonghao QIAN, Jun HU, Sichen SHEN, Ting QIN, Hanyi MA, Xiaodong WANG, Caoyi FENG, Zhinong WEI. Multi-Power Coordinated Optimization Operation Strategy Considering Conditional Value at Risk [J]. Power Generation Technology, 2023, 44(6): 781-789. |
[14] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[15] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||