Power Generation Technology ›› 2024, Vol. 45 ›› Issue (5): 951-958.DOI: 10.12096/j.2096-4528.pgt.22149
• Power Generation and Environmental Protection • Previous Articles
Yinan WANG, Jiayang LÜ, Heng CHEN, Guoqiang ZHANG, Gang XU, Rongrong ZHAI
Received:
2023-06-26
Revised:
2023-09-03
Published:
2024-10-31
Online:
2024-10-29
Supported by:
CLC Number:
Yinan WANG, Jiayang LÜ, Heng CHEN, Guoqiang ZHANG, Gang XU, Rongrong ZHAI. Research on Modeling and Variable Operating Condition Characteristics of Entrained Flow Coal Gasifier Based on Aspen Plus[J]. Power Generation Technology, 2024, 45(5): 951-958.
参数 | 入炉煤 | 氧化剂(氧气) | 输煤气体(氮气) | 气化蒸汽 | 气化条件 | 熔渣 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
煤种 | 流量/(t/h) | 压力/MPa | 流量/(t/h) | 压力/MPa | 流量/(t/h) | 压力/MPa | 温度/℃ | 流量/(t/h) | 气化温度/℃ | 气化压力/MPa | 氧煤比 | 水煤比 | w(碳)/ % | w(灰)/ % | 流量/(t/h) | |
数值 | Illinois#6 | 530.71 | 2.41 | 428.2 | 2.4 | 38.1 | 3.07 | 325 | 14.51 | 1371 | 2.4 | 0.89 | 0.03 | 4.3 | 95.7 | 52.62 |
Tab. 1 Design data of Shell gasifier
参数 | 入炉煤 | 氧化剂(氧气) | 输煤气体(氮气) | 气化蒸汽 | 气化条件 | 熔渣 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
煤种 | 流量/(t/h) | 压力/MPa | 流量/(t/h) | 压力/MPa | 流量/(t/h) | 压力/MPa | 温度/℃ | 流量/(t/h) | 气化温度/℃ | 气化压力/MPa | 氧煤比 | 水煤比 | w(碳)/ % | w(灰)/ % | 流量/(t/h) | |
数值 | Illinois#6 | 530.71 | 2.41 | 428.2 | 2.4 | 38.1 | 3.07 | 325 | 14.51 | 1371 | 2.4 | 0.89 | 0.03 | 4.3 | 95.7 | 52.62 |
参数 | 入炉煤 | 氧化剂(氧气) | 水煤浆 | 气化条件 | 熔渣 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
煤种 | 流量/(t/h) | 压力/MPa | 流量/(t/h) | 耗水量/(t/h) | 质量分数/% | 气化温度/℃ | 气化压力/MPa | 氧煤比 | 水煤比 | w(碳)/% | w(灰)/% | 流量/(t/h) | |
数值 | Illinois#6 | 572.9 | 4.14 | 444.07 | 184.61 | 66.5 | 1 315.6 | 4.0 | 0.96 | 0 | 0 | 100 | 50.35 |
Tab. 2 Design data of Texaco gasifier
参数 | 入炉煤 | 氧化剂(氧气) | 水煤浆 | 气化条件 | 熔渣 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
煤种 | 流量/(t/h) | 压力/MPa | 流量/(t/h) | 耗水量/(t/h) | 质量分数/% | 气化温度/℃ | 气化压力/MPa | 氧煤比 | 水煤比 | w(碳)/% | w(灰)/% | 流量/(t/h) | |
数值 | Illinois#6 | 572.9 | 4.14 | 444.07 | 184.61 | 66.5 | 1 315.6 | 4.0 | 0.96 | 0 | 0 | 100 | 50.35 |
参数 | Cd | Hd | Od | Nd | Sd | Ad | FCd | Vd |
---|---|---|---|---|---|---|---|---|
数值 | 69.6 | 5.2 | 10 | 1.3 | 3.9 | 10 | 51.3 | 38.7 |
Tab. 3 Analysis of coal composition
参数 | Cd | Hd | Od | Nd | Sd | Ad | FCd | Vd |
---|---|---|---|---|---|---|---|---|
数值 | 69.6 | 5.2 | 10 | 1.3 | 3.9 | 10 | 51.3 | 38.7 |
组分 | 体积分数/% | 质量流量/(t/h) | ||
---|---|---|---|---|
设计数据 | 模拟数据 | 设计数据 | 模拟数据 | |
合计 | 100 | 100 | 958.9 | 958.83 |
CO | 60.3 | 60.62 | 788.81 | 792.9 |
H2 | 30.0 | 29.69 | 28.12 | 27.94 |
N2 | 3.6 | 3.68 | 46.72 | 48.12 |
H2O | 2.0 | 2.13 | 16.78 | 17.89 |
CO2 | 1.6 | 1.38 | 33.11 | 28.38 |
H2S | 1.2 | 1.21 | 18.6 | 19.28 |
AR | 1.1 | 1.14 | 21.32 | 21.2 |
COS | 0.1 | 0.10 | 3.63 | 2.76 |
CH4 | — | 0.04 | 0.45 | 0.28 |
NH3+HCN | 0.1 | 0.01 | 1.36 | 0.08 |
Tab. 4 Comparison of simulation results of Shell gasifier
组分 | 体积分数/% | 质量流量/(t/h) | ||
---|---|---|---|---|
设计数据 | 模拟数据 | 设计数据 | 模拟数据 | |
合计 | 100 | 100 | 958.9 | 958.83 |
CO | 60.3 | 60.62 | 788.81 | 792.9 |
H2 | 30.0 | 29.69 | 28.12 | 27.94 |
N2 | 3.6 | 3.68 | 46.72 | 48.12 |
H2O | 2.0 | 2.13 | 16.78 | 17.89 |
CO2 | 1.6 | 1.38 | 33.11 | 28.38 |
H2S | 1.2 | 1.21 | 18.6 | 19.28 |
AR | 1.1 | 1.14 | 21.32 | 21.2 |
COS | 0.1 | 0.10 | 3.63 | 2.76 |
CH4 | — | 0.04 | 0.45 | 0.28 |
NH3+HCN | 0.1 | 0.01 | 1.36 | 0.08 |
组分 | 体积分数/% | 质量流量/(t/h) | ||
---|---|---|---|---|
设计数据 | 模拟数据 | 设计数据 | 模拟数据 | |
合计 | 100 | 100 | 1 151.24 | 1 151.17 |
CO | 40.8 | 42.30 | 649.1 | 674.57 |
H2 | 29.6 | 28.97 | 33.57 | 33.25 |
H2O | 17.0 | 17.83 | 174.64 | 182.92 |
CO2 | 10.2 | 8.92 | 254.01 | 223.61 |
H2S | 1.0 | 1.02 | 19.5 | 19.70 |
N2 | 0.7 | 0.76 | 10.89 | 12.17 |
CH4 | 0.3 | 0.01 | 2.72 | 0.13 |
NH3 | 0.2 | 0.01 | 1.81 | 0.03 |
AR | 0.1 | 0.12 | 2.72 | 2.77 |
COS | 0.1 | 0.06 | 2.27 | 2.02 |
Tab. 5 Comparison of simulation results of Texaco gasifier
组分 | 体积分数/% | 质量流量/(t/h) | ||
---|---|---|---|---|
设计数据 | 模拟数据 | 设计数据 | 模拟数据 | |
合计 | 100 | 100 | 1 151.24 | 1 151.17 |
CO | 40.8 | 42.30 | 649.1 | 674.57 |
H2 | 29.6 | 28.97 | 33.57 | 33.25 |
H2O | 17.0 | 17.83 | 174.64 | 182.92 |
CO2 | 10.2 | 8.92 | 254.01 | 223.61 |
H2S | 1.0 | 1.02 | 19.5 | 19.70 |
N2 | 0.7 | 0.76 | 10.89 | 12.17 |
CH4 | 0.3 | 0.01 | 2.72 | 0.13 |
NH3 | 0.2 | 0.01 | 1.81 | 0.03 |
AR | 0.1 | 0.12 | 2.72 | 2.77 |
COS | 0.1 | 0.06 | 2.27 | 2.02 |
1 | 杨勇平 .燃煤发电系统能源高效清洁利用的基础研究综述[J].发电技术,2019,40(4):308-315. doi:10.12096/j.2096-4528.pgt.19107 |
YANG Y P .Review of basic research on energy clean and efficient utilization in coal-fired power systems[J].Power Generation Technology,2019,40(4):308-315. doi:10.12096/j.2096-4528.pgt.19107 | |
2 | 赵春生,杨君君,王婧,等 .燃煤发电行业低碳发展路径研究[J].发电技术,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 |
ZHAO C S, YANG J J, WANG J,et al .Research on low-carbon development path of coal-fired power industry[J].Power Generation Technology,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 | |
3 | 郑明辉,宋民航,王金星 .“双碳”目标下燃煤机组转型目标与技术分析[J].广东电力,2022,35(7):14-22. |
ZHENG M H, SONG M H, WANG J X .Objective and technical analysis of coal-fired unit transformation under dual carbon goals[J].Guangdong Electric Power,2022,35(7):14-22. | |
4 | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
5 | 国家统计局 .国家数据[EB/OL].(2024-01-01)[2024-08-22].. |
National Bureau of Statistics .National data[EB/OL].(2024-01-01)[2024-08-22].. | |
6 | 孙旭东,张博,彭苏萍 .我国洁净煤技术2035发展趋势与战略对策研究[J].中国工程科学,2020,22(3):132-140. doi:10.15302/j-sscae-2020.03.021 |
SUN X D, ZHANG B, PENG S P .Development trend and strategic countermeasures of clean coal technology in China toward 2035[J].Strategic Study of CAE,2020,22(3):132-140. doi:10.15302/j-sscae-2020.03.021 | |
7 | 武强,涂坤,曾一凡,等 .打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J].煤炭学报,2019,44(6):1625-1636. |
WU Q, TU K, ZENG Y F,et al .Discussion on the main problems and countermeasures for building an upgrade version of main energy(coal)industry in China[J].Journal of China Coal Society,2019,44(6):1625-1636. | |
8 | 严刚,郑逸璇,王雪松,等 .基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究,2022,35(2):309-319. |
YAN G, ZHENG Y X, WANG X S,et al .Pathway for carbon dioxide peaking in China based on sectoral analysis[J].Research of Environmental Sciences,2022,35(2):309-319. | |
9 | 杨硕 .基于煤炭气化的洁净煤发电技术探讨[J].电工技术,2022(5):200-202. |
YANG S .Discussion on clean coal power generation technology based on coal gasification[J].Electric Engineering,2022(5):200-202. | |
10 | 柳康,许世森,李广宇,等 .基于整体煤气化联合循环的燃烧前CO2捕集工艺及系统分析[J].化工进展,2018,37(12):4897-4907. |
LIU K, XU S S, LI G Y,et al .Technological process and system analysis of pre-combustion CO2 capture based on IGCC[J].Chemical Industry and Engineering Progress,2018,37(12):4897-4907. | |
11 | 王赞宇 .整体煤气化联合循环发电系统(IGCC)中煤粉气化系统的特性研究[D].天津:天津大学,2016. |
WANG Z Y .Study on characteristic of integrated gasification combined cycle gasification system[D].Tianjin:Tianjin University,2016. | |
12 | 李国智,王松江,肖娟 .水煤浆预热技术的煤气化系统热经济性敏感性分析与优化[J].煤炭转化,2021,44(5):39-46. |
LI G Z, WANG S J, XIAO J .Sensitivity analysis and optimization on thermo-economic performance of coal-water slurry gasification system with preheating technology[J].Coal Conversion,2021,44(5):39-46. | |
13 | 马娟,郭琴琴,曹勇辉,等 .基于平衡态模型的煤气组分预测方法研究[J].锅炉技术,2015,46(1):8-12. |
MA J, GUO Q Q, CAO Y H,et al .The research of gas components prediction method based on equilibrium theory[J].Boiler Technology,2015,46(1):8-12. | |
14 | 汪洋,代正华,于广锁,等 .运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004,27(4):27-33. |
WANG Y, DAI Z H, YU G S,et al .Simulation of entrained-flow bed coal gasifier by the method of gibbs free energy minimization[J].Coal Conversion,2004,27(4):27-33. | |
15 | 郑志行,李谦,张家元,等 .基于Aspen Plus的Shell气流床工业气化炉模拟[J].化工进展,2021,40(4):2152-2160. |
ZHENG Z H, LI Q, ZHANG J Y,et al .Simulation of industrial Shell entrained flow bed by Aspen Plus[J].Chemical Industry and Engineering Progress,2021,40(4):2152-2160. | |
16 | 朱莎弘,杨欣华,张双铭,等 .基于Aspen Plus的废锅流程粉煤气化炉稳态流程模拟[J].煤炭学报,2023,48(3):1376-1383. |
ZHU S H, YANG X H, ZHANG S M,et al .Steady state simulation of coal gasification with radiant syngas cooler based on Aspen Plus[J].Journal of China Coal Society,2023,48(3):1376-1383. | |
17 | ISMAIL T M, SHI M, XU J,et al .Assessment of coal gasification in a pressurized fixed bed gasifier using an ASPEN plus and Euler-Euler model[J].International Journal of Coal Science & Technology,2020,7(3):516-535. doi:10.1007/s40789-020-00361-w |
18 | CAO Z, LI T, ZHANG Q,et al .Systems modeling,simulation and analysis for robust operations and improved design of entrained-flow pulverized coal gasifiers[J].Energy,2018,148:941-964. doi:10.1016/j.energy.2018.01.134 |
19 | 王辅臣,于广锁,龚欣,等 .大型煤气化技术的研究与发展[J].化工进展,2009,28(2):173-180. |
WANG F C, YU G S, GONG X,et al .Research and development of large-scale coal gasification technology[J].Chemical Industry and Engineering Progress,2009,28(2):173-180. | |
20 | 吴治国 .煤气化原理及其技术发展方向[J].石油炼制与化工,2015,46(4):22-28. |
WU Z G .Coal gasification principle and its technology development direction[J].Petroleum Processing and Petrochemicals,2015,46(4):22-28. | |
21 | MERRICK D .Mathematical models of the thermal decomposition of coal:the evolution of volatile matter[J].Fuel,1983,62(5):534-539. doi:10.1016/0016-2361(83)90222-3 |
22 | 吴学成,王勤辉,骆仲泱,等 .气化参数影响气流床煤气化的模型研究(Ⅰ):模型建立及验证[J].浙江大学学报(工学版),2004,38(10):124-128. |
WU X C, WANG Q H, LUO Z Y,et al .Modelling on effects of operation parameters on entrained flow coal gasification (Ⅰ):model establishment and validation[J].Journal of Zhejiang University(Engineering Science),2004,38(10):124-128. | |
23 | 焦树建 .论IGCC电站中气化炉型的选择[J].燃气轮机技术,2002,15(2):5-14. |
JIAO S J .Choice of gasifier’s pattern for IGCC power plant[J].Gas Turbine Technology,2002,15(2):5-14. |
[1] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[2] | Yanbing LI, Shuwang JIA, Junliang ZHANG, Yue FU, Ming LIU, Junjie YAN. Exergy Economic Analysis of Ultra-Supercritical Coal-Fired Power Plants With High-Level Layout of Turbine Under Load-Cycling Conditions [J]. Power Generation Technology, 2024, 45(1): 69-78. |
[3] | Yuzhen HUANG, Yanqi CHEN, Zhicong WU, Gang XU, Tong LIU. Energy Saving Optimization of Extraction Steam Distribution for Cogeneration Units Under Carbon Neutral Background [J]. Power Generation Technology, 2023, 44(1): 85-93. |
[4] | Kaiyun ZHENG. Study on Supercritical CO2 Cycle Coal-fired Power Generation System for Low Temperature Scenario [J]. Power Generation Technology, 2022, 43(1): 126-130. |
[5] | Chunsheng ZHAO, Junjun YANG, Jing WANG, Liqiang DUAN. Research on Low-carbon Development Path of Coal-fired Power Industry [J]. Power Generation Technology, 2021, 42(5): 547-553. |
[6] | Jinfu YANG,Zhongxiao ZHANG,Dongjiang HAN,Mei YANG,Yunlong ZHOU. New Supercritical Parameter Coal-Fired Power Generation System Structure Design Technology [J]. Power Generation Technology, 2019, 40(6): 555-563. |
[7] | Rongrong ZHAI,Hongtao LIU. Theoretical Analysis of Solar-aided Coal-fired Power Generation System Based on Finite Time Thermodynamics [J]. Power Generation Technology, 2019, 40(4): 316-322. |
[8] | Yongping YANG. Review of Basic Research on Energy Clean and Efficient Utilization in Coal-fired Power Systems [J]. Power Generation Technology, 2019, 40(4): 308-315. |
[9] | Chuang ZHAO,Daqian WANG,Haiping YANG,Xianhua WANG,Shihong ZHANG,Hanping CHEN. Simulated of HTW Pressurized Fluidized Bed Gasifier [J]. Power Generation Technology, 2018, 39(5): 419-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||